A local algebra structure for of the polydisc

Kent Merryfield; Saleem Watson

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 1, page 73-79
  • ISSN: 0010-1354

How to cite

top

Merryfield, Kent, and Watson, Saleem. "A local algebra structure for $H^p$ of the polydisc." Colloquium Mathematicae 62.1 (1991): 73-79. <http://eudml.org/doc/210101>.

@article{Merryfield1991,
author = {Merryfield, Kent, Watson, Saleem},
journal = {Colloquium Mathematicae},
keywords = {Duhamel product; Hardy spaces on the polydisc; local Banach algebras; Hardy space; -normed; -algebra; -valued analytic functions; Banach algebra structure; natural extension of the Dunhamel product; vector-valued analytic functions; maximal ideal space},
language = {eng},
number = {1},
pages = {73-79},
title = {A local algebra structure for $H^p$ of the polydisc},
url = {http://eudml.org/doc/210101},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Merryfield, Kent
AU - Watson, Saleem
TI - A local algebra structure for $H^p$ of the polydisc
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 73
EP - 79
LA - eng
KW - Duhamel product; Hardy spaces on the polydisc; local Banach algebras; Hardy space; -normed; -algebra; -valued analytic functions; Banach algebra structure; natural extension of the Dunhamel product; vector-valued analytic functions; maximal ideal space
UR - http://eudml.org/doc/210101
ER -

References

top
  1. [1] P. L. Duren, Theory of Spaces, Academic Press, New York 1970. Zbl0215.20203
  2. [2] A. P. Frazier, The dual space of H^p of the polydisc for 0<p<1, Duke Math. J. 39 (1972), 369-379. Zbl0237.32005
  3. [3]E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloq. Publ. 31, Providence, R.I., 1957. Zbl0078.10004
  4. [4] K. Merryfield, On the area integral, Carleson measures and in the polydisc, Indiana Univ. Math. J. 34 (1985), 663-685. Zbl0573.42014
  5. [5] P. Porcelli, Linear Spaces of Analytic Functions, Rand McNally, Chicago 1966. 
  6. [6] J. Stewart and S. Watson, Topological algebras with finitely-generated bases, Math. Ann. 271 (1985), 315-318. Zbl0546.46044
  7. [7] N. M. Wigley, A Banach algebra structure for , Canad. Math. Bull. 18 (1975), 597-603. 
  8. [8] W. Żelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960), 333-356. Zbl0096.08303
  9. [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.