A local algebra structure for H p of the polydisc

Kent Merryfield; Saleem Watson

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 1, page 73-79
  • ISSN: 0010-1354

How to cite

top

Merryfield, Kent, and Watson, Saleem. "A local algebra structure for $H^p$ of the polydisc." Colloquium Mathematicae 62.1 (1991): 73-79. <http://eudml.org/doc/210101>.

@article{Merryfield1991,
author = {Merryfield, Kent, Watson, Saleem},
journal = {Colloquium Mathematicae},
keywords = {Duhamel product; Hardy spaces on the polydisc; local Banach algebras; Hardy space; -normed; -algebra; -valued analytic functions; Banach algebra structure; natural extension of the Dunhamel product; vector-valued analytic functions; maximal ideal space},
language = {eng},
number = {1},
pages = {73-79},
title = {A local algebra structure for $H^p$ of the polydisc},
url = {http://eudml.org/doc/210101},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Merryfield, Kent
AU - Watson, Saleem
TI - A local algebra structure for $H^p$ of the polydisc
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 73
EP - 79
LA - eng
KW - Duhamel product; Hardy spaces on the polydisc; local Banach algebras; Hardy space; -normed; -algebra; -valued analytic functions; Banach algebra structure; natural extension of the Dunhamel product; vector-valued analytic functions; maximal ideal space
UR - http://eudml.org/doc/210101
ER -

References

top
  1. [1] P. L. Duren, Theory of H p Spaces, Academic Press, New York 1970. Zbl0215.20203
  2. [2] A. P. Frazier, The dual space of H^p of the polydisc for 0<p<1, Duke Math. J. 39 (1972), 369-379. Zbl0237.32005
  3. [3]E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloq. Publ. 31, Providence, R.I., 1957. Zbl0078.10004
  4. [4] K. Merryfield, On the area integral, Carleson measures and H p in the polydisc, Indiana Univ. Math. J. 34 (1985), 663-685. Zbl0573.42014
  5. [5] P. Porcelli, Linear Spaces of Analytic Functions, Rand McNally, Chicago 1966. 
  6. [6] J. Stewart and S. Watson, Topological algebras with finitely-generated bases, Math. Ann. 271 (1985), 315-318. Zbl0546.46044
  7. [7] N. M. Wigley, A Banach algebra structure for H p , Canad. Math. Bull. 18 (1975), 597-603. 
  8. [8] W. Żelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960), 333-356. Zbl0096.08303
  9. [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.