# A local algebra structure for ${H}^{p}$ of the polydisc

Kent Merryfield; Saleem Watson

Colloquium Mathematicae (1991)

- Volume: 62, Issue: 1, page 73-79
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topMerryfield, Kent, and Watson, Saleem. "A local algebra structure for $H^p$ of the polydisc." Colloquium Mathematicae 62.1 (1991): 73-79. <http://eudml.org/doc/210101>.

@article{Merryfield1991,

author = {Merryfield, Kent, Watson, Saleem},

journal = {Colloquium Mathematicae},

keywords = {Duhamel product; Hardy spaces on the polydisc; local Banach algebras; Hardy space; -normed; -algebra; -valued analytic functions; Banach algebra structure; natural extension of the Dunhamel product; vector-valued analytic functions; maximal ideal space},

language = {eng},

number = {1},

pages = {73-79},

title = {A local algebra structure for $H^p$ of the polydisc},

url = {http://eudml.org/doc/210101},

volume = {62},

year = {1991},

}

TY - JOUR

AU - Merryfield, Kent

AU - Watson, Saleem

TI - A local algebra structure for $H^p$ of the polydisc

JO - Colloquium Mathematicae

PY - 1991

VL - 62

IS - 1

SP - 73

EP - 79

LA - eng

KW - Duhamel product; Hardy spaces on the polydisc; local Banach algebras; Hardy space; -normed; -algebra; -valued analytic functions; Banach algebra structure; natural extension of the Dunhamel product; vector-valued analytic functions; maximal ideal space

UR - http://eudml.org/doc/210101

ER -

## References

top- [1] P. L. Duren, Theory of ${H}^{p}$ Spaces, Academic Press, New York 1970. Zbl0215.20203
- [2] A. P. Frazier, The dual space of H^p of the polydisc for 0<p<1, Duke Math. J. 39 (1972), 369-379. Zbl0237.32005
- [3]E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloq. Publ. 31, Providence, R.I., 1957. Zbl0078.10004
- [4] K. Merryfield, On the area integral, Carleson measures and ${H}^{p}$ in the polydisc, Indiana Univ. Math. J. 34 (1985), 663-685. Zbl0573.42014
- [5] P. Porcelli, Linear Spaces of Analytic Functions, Rand McNally, Chicago 1966.
- [6] J. Stewart and S. Watson, Topological algebras with finitely-generated bases, Math. Ann. 271 (1985), 315-318. Zbl0546.46044
- [7] N. M. Wigley, A Banach algebra structure for ${H}^{p}$, Canad. Math. Bull. 18 (1975), 597-603.
- [8] W. Żelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960), 333-356. Zbl0096.08303
- [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. Zbl0085.05601

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.