# Contractive projections on the fixed point set of ${L}_{\infty}$ contractions

Colloquium Mathematicae (1991)

- Volume: 62, Issue: 1, page 91-96
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topLin, Michael, and Sine, Robert. "Contractive projections on the fixed point set of $L_∞$ contractions." Colloquium Mathematicae 62.1 (1991): 91-96. <http://eudml.org/doc/210104>.

@article{Lin1991,

author = {Lin, Michael, Sine, Robert},

journal = {Colloquium Mathematicae},

keywords = {$L_∞$; projection; contraction; binary ball intersection; ergodic; positive operator; fixed point; commutative semigroup of linear contractions; common fixed points; existence of contractive projections},

language = {eng},

number = {1},

pages = {91-96},

title = {Contractive projections on the fixed point set of $L_∞$ contractions},

url = {http://eudml.org/doc/210104},

volume = {62},

year = {1991},

}

TY - JOUR

AU - Lin, Michael

AU - Sine, Robert

TI - Contractive projections on the fixed point set of $L_∞$ contractions

JO - Colloquium Mathematicae

PY - 1991

VL - 62

IS - 1

SP - 91

EP - 96

LA - eng

KW - $L_∞$; projection; contraction; binary ball intersection; ergodic; positive operator; fixed point; commutative semigroup of linear contractions; common fixed points; existence of contractive projections

UR - http://eudml.org/doc/210104

ER -

## References

top- [AP] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. Zbl0074.17802
- [B] J. B. Baillon, Nonexpansive mappings and hyperconvex spaces, Contemp. Math. 72 (1988), 11-19. Zbl0653.54021
- [Br] R. E. Bruck, Jr., A common fixed point theorem for a commuting family of nonexpansive mappings, Pacific J. Math. 53 (1974), 59-71.
- [Ka] S. Kakutani, Some characterizations of Euclidean space, Japan. J. Math. 16 (1939), 93-97. Zbl0022.15001
- [Kr] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, Berlin 1985.
- [La] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin 1974. Zbl0285.46024
- [LS] M. Lin and R. Sine, On the fixed point set of nonexpansive order preserving maps, Math. Z. 203 (1990), 227-234. Zbl0662.47030
- [LT] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269. Zbl0211.16301
- [L1] S. P. Lloyd, An adjoint ergodic theorem, in: Ergodic Theory, F. B. Wright (ed.), Academic Press, 1963, 195-201.
- [L2] S. P. Lloyd, Feller boundary induced by a transition operator, Pacific J. Math. 27 (1968), 547-566. Zbl0167.44501
- [L3] S. P. Lloyd, Poisson-Martin representation of excessive functions, unpublished manu- script.
- [Si] R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890. Zbl0423.47035
- [So] P. Soardi, Existence of fixed point of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), 25-29. Zbl0371.47048

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.