Contractive projections on the fixed point set of L contractions

Michael Lin; Robert Sine

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 1, page 91-96
  • ISSN: 0010-1354

How to cite

top

Lin, Michael, and Sine, Robert. "Contractive projections on the fixed point set of $L_∞$ contractions." Colloquium Mathematicae 62.1 (1991): 91-96. <http://eudml.org/doc/210104>.

@article{Lin1991,
author = {Lin, Michael, Sine, Robert},
journal = {Colloquium Mathematicae},
keywords = {$L_∞$; projection; contraction; binary ball intersection; ergodic; positive operator; fixed point; commutative semigroup of linear contractions; common fixed points; existence of contractive projections},
language = {eng},
number = {1},
pages = {91-96},
title = {Contractive projections on the fixed point set of $L_∞$ contractions},
url = {http://eudml.org/doc/210104},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Lin, Michael
AU - Sine, Robert
TI - Contractive projections on the fixed point set of $L_∞$ contractions
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 91
EP - 96
LA - eng
KW - $L_∞$; projection; contraction; binary ball intersection; ergodic; positive operator; fixed point; commutative semigroup of linear contractions; common fixed points; existence of contractive projections
UR - http://eudml.org/doc/210104
ER -

References

top
  1. [AP] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. Zbl0074.17802
  2. [B] J. B. Baillon, Nonexpansive mappings and hyperconvex spaces, Contemp. Math. 72 (1988), 11-19. Zbl0653.54021
  3. [Br] R. E. Bruck, Jr., A common fixed point theorem for a commuting family of nonexpansive mappings, Pacific J. Math. 53 (1974), 59-71. 
  4. [Ka] S. Kakutani, Some characterizations of Euclidean space, Japan. J. Math. 16 (1939), 93-97. Zbl0022.15001
  5. [Kr] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, Berlin 1985. 
  6. [La] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin 1974. Zbl0285.46024
  7. [LS] M. Lin and R. Sine, On the fixed point set of nonexpansive order preserving maps, Math. Z. 203 (1990), 227-234. Zbl0662.47030
  8. [LT] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269. Zbl0211.16301
  9. [L1] S. P. Lloyd, An adjoint ergodic theorem, in: Ergodic Theory, F. B. Wright (ed.), Academic Press, 1963, 195-201. 
  10. [L2] S. P. Lloyd, Feller boundary induced by a transition operator, Pacific J. Math. 27 (1968), 547-566. Zbl0167.44501
  11. [L3] S. P. Lloyd, Poisson-Martin representation of excessive functions, unpublished manu- script. 
  12. [Si] R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890. Zbl0423.47035
  13. [So] P. Soardi, Existence of fixed point of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), 25-29. Zbl0371.47048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.