Some additive properties of special sets of reals
Colloquium Mathematicae (1991)
- Volume: 62, Issue: 2, page 221-226
- ISSN: 0010-1354
Access Full Article
topHow to cite
topRecław, Ireneusz. "Some additive properties of special sets of reals." Colloquium Mathematicae 62.2 (1991): 221-226. <http://eudml.org/doc/210110>.
@article{Recław1991,
author = {Recław, Ireneusz},
journal = {Colloquium Mathematicae},
keywords = {Borel measure; perfect set; additive properties of special sets of reals; Martin's Axiom; universally null set},
language = {eng},
number = {2},
pages = {221-226},
title = {Some additive properties of special sets of reals},
url = {http://eudml.org/doc/210110},
volume = {62},
year = {1991},
}
TY - JOUR
AU - Recław, Ireneusz
TI - Some additive properties of special sets of reals
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 221
EP - 226
LA - eng
KW - Borel measure; perfect set; additive properties of special sets of reals; Martin's Axiom; universally null set
UR - http://eudml.org/doc/210110
ER -
References
top- [1] J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1981/82), 185-232. Zbl0503.54045
- [2] P. Erdős, K. Kunen and R. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), 187-199. Zbl0482.28001
- [3] W. G. Fleissner and A. W. Miller, On Q-sets, Proc. Amer. Math. Soc. 78 (1980), 280-284.
- [4] D. H. Fremlin and J. Jasiński, -covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538. Zbl0591.54028
- [5] F. Galvin, J. Mycielski and R. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.
- [6] E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 7-10. Zbl0483.28003
- [7] E. Grzegorek, Always of the first category sets, in: Proc. 12th Winter School on Abstract Analysis, Srní 15-29 January, 1984, Section Topology, Rend. Circ. Mat. Palermo (2) Suppl. 6 (1984), 139-147. Zbl0571.54025
- [8] K. Kuratowski, Topology I, Academic Press, New York, and PWN, Warszawa 1966.
- [9] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam 1984, 201-233.
- [10] J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147. Zbl0124.01301
- [11] J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141.
- [12] W. F. Pfeffer and K. Prikry, Small spaces, Proc. London Math. Soc. (3) 58 (1989), 417-438 Zbl0678.54026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.