Some additive properties of special sets of reals

Ireneusz Recław

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 2, page 221-226
  • ISSN: 0010-1354

How to cite

top

Recław, Ireneusz. "Some additive properties of special sets of reals." Colloquium Mathematicae 62.2 (1991): 221-226. <http://eudml.org/doc/210110>.

@article{Recław1991,
author = {Recław, Ireneusz},
journal = {Colloquium Mathematicae},
keywords = {Borel measure; perfect set; additive properties of special sets of reals; Martin's Axiom; universally null set},
language = {eng},
number = {2},
pages = {221-226},
title = {Some additive properties of special sets of reals},
url = {http://eudml.org/doc/210110},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Recław, Ireneusz
TI - Some additive properties of special sets of reals
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 221
EP - 226
LA - eng
KW - Borel measure; perfect set; additive properties of special sets of reals; Martin's Axiom; universally null set
UR - http://eudml.org/doc/210110
ER -

References

top
  1. [1] J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1981/82), 185-232. Zbl0503.54045
  2. [2] P. Erdős, K. Kunen and R. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), 187-199. Zbl0482.28001
  3. [3] W. G. Fleissner and A. W. Miller, On Q-sets, Proc. Amer. Math. Soc. 78 (1980), 280-284. 
  4. [4] D. H. Fremlin and J. Jasiński, G δ -covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538. Zbl0591.54028
  5. [5] F. Galvin, J. Mycielski and R. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280. 
  6. [6] E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 7-10. Zbl0483.28003
  7. [7] E. Grzegorek, Always of the first category sets, in: Proc. 12th Winter School on Abstract Analysis, Srní 15-29 January, 1984, Section Topology, Rend. Circ. Mat. Palermo (2) Suppl. 6 (1984), 139-147. Zbl0571.54025
  8. [8] K. Kuratowski, Topology I, Academic Press, New York, and PWN, Warszawa 1966. 
  9. [9] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam 1984, 201-233. 
  10. [10] J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147. Zbl0124.01301
  11. [11] J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141. 
  12. [12] W. F. Pfeffer and K. Prikry, Small spaces, Proc. London Math. Soc. (3) 58 (1989), 417-438 Zbl0678.54026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.