Vector-valued Calderón-Zygmund theory applied to tent spaces
Colloquium Mathematicae (1991)
- Volume: 62, Issue: 2, page 267-277
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [1] J. Alvarez and M. Milman, Spaces of Carleson measures: duality and interpolation, Ark. Mat. 25 (1987), 155-174. Zbl0638.42020
- [2] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. Harmonic Analysis in Honor of A. Zygmund, Wadsworth, Belmont, Calif., 1983, 270-286.
- [3] R. R. Coifman, Y. Meyer et E. M. Stein, Un nouvel espace fonctionnel adapté à l'étude des opérateurs définis par des intégrales singulières, in: Proc. Conf. Harmonic Analysis, Cortona, Lecture Notes in Math. 992, Springer, Berlin 1983, 1-15.
- [4] R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335. Zbl0569.42016
- [5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [6] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48. Zbl0627.42008
- [7] F. J. Ruiz and J. L. Torrea, Weighted and vector-valued inequalities for potential operators, Trans. Amer. Math. Soc. 295 (1986), 213-232. Zbl0594.42014
- [8] F. J. Ruiz and J. L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math. 88 (1988), 221-243. Zbl0639.42015
- [9] F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122. Zbl0326.44005