Some indefinite metrics and covariant derivatives of their curvature tensors

W. Roter

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 2, page 283-292
  • ISSN: 0010-1354

How to cite

top

Roter, W.. "Some indefinite metrics and covariant derivatives of their curvature tensors." Colloquium Mathematicae 62.2 (1991): 283-292. <http://eudml.org/doc/210115>.

@article{Roter1991,
author = {Roter, W.},
journal = {Colloquium Mathematicae},
keywords = {indefinite metrics; pseudo-Riemannian manifolds},
language = {eng},
number = {2},
pages = {283-292},
title = {Some indefinite metrics and covariant derivatives of their curvature tensors},
url = {http://eudml.org/doc/210115},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Roter, W.
TI - Some indefinite metrics and covariant derivatives of their curvature tensors
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 283
EP - 292
LA - eng
KW - indefinite metrics; pseudo-Riemannian manifolds
UR - http://eudml.org/doc/210115
ER -

References

top
  1. [1] T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967), 348-354. Zbl0152.39103
  2. [2] M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122. Zbl0122.39902
  3. [3] A. Derdziński, The local structure of essentially conformally symmetric manifolds with constant fundamental function, I. The elliptic case, Colloq. Math. 42 (1979), 53-81. Zbl0439.53034
  4. [4] A. Derdziński, The local structure of essentially conformally symmetric manifolds with constant fundamental function, II. The hyperbolic case, ibid. 44 (1981), 77-95. Zbl0491.53013
  5. [5] A. Derdziński and W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor (N.S.) 31 (1977), 255-259. Zbl0379.53027
  6. [6] A. Derdziński and W. Roter, Some theorems on conformally symmetric manifolds, ibid. 32 (1978), 11-23. Zbl0378.53010
  7. [7] L. P. Eisenhart, Riemannian Geometry, 2nd ed., Princeton University Press, Princeton 1949. 
  8. [8] V. R. Kaĭgorodov, Structure of the curvature of space-time, in: Problems in Geometry, Itogi Nauki i Tekhniki 14 (1983), 177-204 (in Russian). 
  9. [9] M. Matsumoto, On Riemannian spaces with recurrent projective curvature, Tensor (N.S.) 19 (1968), 11-18. Zbl0168.19405
  10. [10] H. K. Nickerson, On conformally symmetric spaces, Geom. Dedicata 18 (1985), 87-99. Zbl0568.53013
  11. [11] K. Nomizu and H. Ozeki, A theorem on curvature tensor fields, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 206-207. Zbl0139.39201
  12. [12] E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295. Zbl0048.15604
  13. [13] W. Roter, On conformally related conformally recurrent metrics, I. Some general results, Colloq. Math. 47 (1982), 39-46. Zbl0512.53021
  14. [14] W. Roter, On a class of conformally recurrent manifolds, Tensor (N.S.) 39 (1982), 207-217. Zbl0518.53018
  15. [15] W. Roter, On the existence of certain conformally recurrent metrics, Colloq. Math. 51 (1987), 315-327. Zbl0622.53012
  16. [16] H. S. Ruse, A. G. Walker and T. J. Willmore, Harmonic Spaces, Edizioni Cremonese, Roma 1961. Zbl0134.39202
  17. [17] S. Tanno, Curvature tensors and covariant derivatives, Ann. Mat. Pura Appl. 96 (1973), 233-241. Zbl0277.53013
  18. [18] A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc. 52 (1950), 36-64. Zbl0039.17702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.