The Mazur intersection property for families of closed bounded convex sets in Banach spaces

Pradipta Bandyopadhyaya

Colloquium Mathematicae (1992)

  • Volume: 63, Issue: 1, page 45-56
  • ISSN: 0010-1354

How to cite

top

Bandyopadhyaya, Pradipta. "The Mazur intersection property for families of closed bounded convex sets in Banach spaces." Colloquium Mathematicae 63.1 (1992): 45-56. <http://eudml.org/doc/210133>.

@article{Bandyopadhyaya1992,
author = {Bandyopadhyaya, Pradipta},
journal = {Colloquium Mathematicae},
keywords = {duality map; points of continuity; Bochner $L^p$-spaces; (w*-) denting points; support mapping; norming subspaces; Mazur Intersection Property; Mazur intersection property; MIP; separation property; Lebesgue-Bochner space},
language = {eng},
number = {1},
pages = {45-56},
title = {The Mazur intersection property for families of closed bounded convex sets in Banach spaces},
url = {http://eudml.org/doc/210133},
volume = {63},
year = {1992},
}

TY - JOUR
AU - Bandyopadhyaya, Pradipta
TI - The Mazur intersection property for families of closed bounded convex sets in Banach spaces
JO - Colloquium Mathematicae
PY - 1992
VL - 63
IS - 1
SP - 45
EP - 56
LA - eng
KW - duality map; points of continuity; Bochner $L^p$-spaces; (w*-) denting points; support mapping; norming subspaces; Mazur Intersection Property; Mazur intersection property; MIP; separation property; Lebesgue-Bochner space
UR - http://eudml.org/doc/210133
ER -

References

top
  1. [1] P. Bandyopadhyaya and A. K. Roy, Some stability results for Banach spaces with the Mazur Intersection Property, Indag. Math. 1 (2) (1990), 137-154. Zbl0728.46020
  2. [2] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. Zbl0098.07905
  3. [3] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181-182. Zbl0217.45104
  4. [4] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1983. Zbl0512.46017
  5. [5] G. Choquet, Lectures on Analysis, Vol. II, W. A. Benjamin, New York 1969. 
  6. [6] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977. 
  7. [7] N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience, New York 1958. Zbl0084.10402
  8. [8] J. R. Giles, Convex Analysis with Application in the Differentiation of Convex Functions, Pitman Adv. Publ. Program, Boston 1982. Zbl0486.46001
  9. [9] J. R. Giles, D. A. Gregory and B. Sims, Characterization of normed linear spaces with Mazur's intersection property, Bull. Austral. Math. Soc. 18 (1978), 105-123. Zbl0373.46028
  10. [10] S. Mazur, Über schwache Konvergenz in den Räumen ( L p ) , Studia Math. 4 (1933), 128-133. Zbl59.1076.01
  11. [11] R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960), 976-983. Zbl0098.07904
  12. [12] A. Sersouri, The Mazur property for compact sets, Pacific J. Math. 133 (1988), 185-195. Zbl0653.46021
  13. [13] A. Sersouri, Mazur's intersection property for finite dimensional sets, Math. Ann. 283 (1989), 165-170. Zbl0642.52002
  14. [14] J. H. M. Whitfield and V. Zizler, Mazur's intersection property of balls for compact convex sets, Bull. Austral. Math. Soc. 35 (1987), 267-274. Zbl0609.46005
  15. [15] V. Zizler, Note on separation of convex sets, Czechoslovak Math. J. 21 (1971), 340-343. Zbl0218.46018
  16. [16] V. Zizler, Renorming concerning Mazur's intersection property of balls for weakly compact convex sets, Math. Ann. 276 (1986), 61-66. Zbl0587.46007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.