Pseudocompactness - from compactifications to multiplication of borel sets
Colloquium Mathematicae (1992)
- Volume: 63, Issue: 2, page 303-309
- ISSN: 0010-1354
Access Full Article
topHow to cite
topWajch, Eliza. "Pseudocompactness - from compactifications to multiplication of borel sets." Colloquium Mathematicae 63.2 (1992): 303-309. <http://eudml.org/doc/210155>.
@article{Wajch1992,
author = {Wajch, Eliza},
journal = {Colloquium Mathematicae},
keywords = {perfectly normal space; compactification; Borel sets; product space; perfectly normal pseudocompact spaces},
language = {eng},
number = {2},
pages = {303-309},
title = {Pseudocompactness - from compactifications to multiplication of borel sets},
url = {http://eudml.org/doc/210155},
volume = {63},
year = {1992},
}
TY - JOUR
AU - Wajch, Eliza
TI - Pseudocompactness - from compactifications to multiplication of borel sets
JO - Colloquium Mathematicae
PY - 1992
VL - 63
IS - 2
SP - 303
EP - 309
LA - eng
KW - perfectly normal space; compactification; Borel sets; product space; perfectly normal pseudocompact spaces
UR - http://eudml.org/doc/210155
ER -
References
top- [1] A. G. Babiker and J. D. Knowles, Functions and measures on product spaces, Mathematika 32 (1985), 60-67. Zbl0578.28004
- [2] B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), Topology Appl. 13 (1982), 1-13. Zbl0464.54023
- [3] B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), II, ibid. 15 (1983), 1-6.
- [4] J. L. Blasco, Hausdorff compactifications and Lebesgue sets, ibid., 111-117. Zbl0498.54021
- [5] J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998. Zbl0347.54013
- [6] K. Ciesielski and F. Galvin, Cylinder problem, Fund. Math. 127 (1987), 171-176. Zbl0633.03044
- [7] R. Engelking, General Topology, PWN, Warszawa 1977.
- [8] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York 1976. Zbl0327.46040
- [9] K. Kunen, Inaccessibility properties of cardinals, PhD Thesis, Stanford University, Palo Alto 1968.
- [10] B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617. Zbl0175.00704
- [11] C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, London 1980, 1-181.
- [12] E. Wajch, Complete rings of functions and Wallman-Frink compactifications, Colloq. Math. 56 (1988), 281-290. Zbl0689.54010
- [13] E. Wajch, Compactifications and L-separation, Comment. Math. Univ. Carolinae 29 (1988), 477-484. Zbl0675.54022
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.