Pseudocompactness - from compactifications to multiplication of borel sets
Colloquium Mathematicae (1992)
- Volume: 63, Issue: 2, page 303-309
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [1] A. G. Babiker and J. D. Knowles, Functions and measures on product spaces, Mathematika 32 (1985), 60-67. Zbl0578.28004
- [2] B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), Topology Appl. 13 (1982), 1-13. Zbl0464.54023
- [3] B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), II, ibid. 15 (1983), 1-6.
- [4] J. L. Blasco, Hausdorff compactifications and Lebesgue sets, ibid., 111-117. Zbl0498.54021
- [5] J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998. Zbl0347.54013
- [6] K. Ciesielski and F. Galvin, Cylinder problem, Fund. Math. 127 (1987), 171-176. Zbl0633.03044
- [7] R. Engelking, General Topology, PWN, Warszawa 1977.
- [8] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York 1976. Zbl0327.46040
- [9] K. Kunen, Inaccessibility properties of cardinals, PhD Thesis, Stanford University, Palo Alto 1968.
- [10] B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617. Zbl0175.00704
- [11] C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, London 1980, 1-181.
- [12] E. Wajch, Complete rings of functions and Wallman-Frink compactifications, Colloq. Math. 56 (1988), 281-290. Zbl0689.54010
- [13] E. Wajch, Compactifications and L-separation, Comment. Math. Univ. Carolinae 29 (1988), 477-484. Zbl0675.54022