Pseudocompactness - from compactifications to multiplication of borel sets

Eliza Wajch

Colloquium Mathematicae (1992)

  • Volume: 63, Issue: 2, page 303-309
  • ISSN: 0010-1354

How to cite

top

Wajch, Eliza. "Pseudocompactness - from compactifications to multiplication of borel sets." Colloquium Mathematicae 63.2 (1992): 303-309. <http://eudml.org/doc/210155>.

@article{Wajch1992,
author = {Wajch, Eliza},
journal = {Colloquium Mathematicae},
keywords = {perfectly normal space; compactification; Borel sets; product space; perfectly normal pseudocompact spaces},
language = {eng},
number = {2},
pages = {303-309},
title = {Pseudocompactness - from compactifications to multiplication of borel sets},
url = {http://eudml.org/doc/210155},
volume = {63},
year = {1992},
}

TY - JOUR
AU - Wajch, Eliza
TI - Pseudocompactness - from compactifications to multiplication of borel sets
JO - Colloquium Mathematicae
PY - 1992
VL - 63
IS - 2
SP - 303
EP - 309
LA - eng
KW - perfectly normal space; compactification; Borel sets; product space; perfectly normal pseudocompact spaces
UR - http://eudml.org/doc/210155
ER -

References

top
  1. [1] A. G. Babiker and J. D. Knowles, Functions and measures on product spaces, Mathematika 32 (1985), 60-67. Zbl0578.28004
  2. [2] B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), Topology Appl. 13 (1982), 1-13. Zbl0464.54023
  3. [3] B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), II, ibid. 15 (1983), 1-6. 
  4. [4] J. L. Blasco, Hausdorff compactifications and Lebesgue sets, ibid., 111-117. Zbl0498.54021
  5. [5] J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998. Zbl0347.54013
  6. [6] K. Ciesielski and F. Galvin, Cylinder problem, Fund. Math. 127 (1987), 171-176. Zbl0633.03044
  7. [7] R. Engelking, General Topology, PWN, Warszawa 1977. 
  8. [8] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York 1976. Zbl0327.46040
  9. [9] K. Kunen, Inaccessibility properties of cardinals, PhD Thesis, Stanford University, Palo Alto 1968. 
  10. [10] B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617. Zbl0175.00704
  11. [11] C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, London 1980, 1-181. 
  12. [12] E. Wajch, Complete rings of functions and Wallman-Frink compactifications, Colloq. Math. 56 (1988), 281-290. Zbl0689.54010
  13. [13] E. Wajch, Compactifications and L-separation, Comment. Math. Univ. Carolinae 29 (1988), 477-484. Zbl0675.54022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.