On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type

Mauro Capursi; Sorin Dragomir

Colloquium Mathematicae (1993)

  • Volume: 64, Issue: 1, page 29-40
  • ISSN: 0010-1354

How to cite

top

Capursi, Mauro, and Dragomir, Sorin. "On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type." Colloquium Mathematicae 64.1 (1993): 29-40. <http://eudml.org/doc/210169>.

@article{Capursi1993,
author = {Capursi, Mauro, Dragomir, Sorin},
journal = {Colloquium Mathematicae},
keywords = {Hopf manifolds; Betti numbers},
language = {eng},
number = {1},
pages = {29-40},
title = {On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type},
url = {http://eudml.org/doc/210169},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Capursi, Mauro
AU - Dragomir, Sorin
TI - On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 1
SP - 29
EP - 40
LA - eng
KW - Hopf manifolds; Betti numbers
UR - http://eudml.org/doc/210169
ER -

References

top
  1. [1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1 (1967), 331-345. Zbl0163.43903
  2. [2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, 1976. Zbl0319.53026
  3. [3] D. E. Blair and S. Goldberg, Topology of almost contact manifolds, J. Differential Geom. 1 (1967), 347-354. Zbl0163.43902
  4. [4] D. E. Blair, C. D. Ludden and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184. Zbl0276.53026
  5. [5] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (3) 68 (1958), 721-734. Zbl0084.39204
  6. [6] S. Dragomir, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 98-110. 
  7. [7] S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds. I-II, Geom. Dedicata 28 (1988), 181-197, Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1-11. Zbl0659.53041
  8. [8] S. Dragomir and L. M. Abatangelo, Principal toroidal bundles over Cauchy-Riemann products, Internat. J. Math. Math. Sci. (2) 13 (1990), 299-310. Zbl0704.53043
  9. [9] S. Dragomir and R. Grimaldi, Isometric immersions of Riemann spaces in a real Hopf manifold, J. Math. Pures Appl. 68 (1989), 355-364. Zbl0686.53054
  10. [10] S. I. Goldberg, Curvature and Homology, Academic Press, New York 1962. 
  11. [11] S. I. Goldberg, Totally geodesic hypersurfaces of Kaehler manifolds, Pacific J. Math. (2) 27 (1968), 275-281. Zbl0165.24802
  12. [12] M. Inoue, On surfaces of class VII 0 , Invent. Math. 24 (1974), 269-310. Zbl0283.32019
  13. [13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, Vols. I-II, New York 1963, 1969. Zbl0119.37502
  14. [14] P. Libermann, Sur les structures presque complexes et autres structures infinité- simales régulières, Bull. Soc. Math. France 83 (1955), 195-224. Zbl0064.41702
  15. [15] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 1 (1981), 239-250. Zbl0451.53035
  16. [16] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), 73-87. Zbl0702.53025
  17. [17] Z. Olszak, Normal almost contact metric manifolds of dimension 3, Ann. Polon. Math. 47 (1986), 41-50. 
  18. [18] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957). Zbl0178.26502
  19. [19] C. Reischer and I. Vaisman, Local similarity manifolds, Ann. Mat. Pura Appl. 135 (1983), 279-292. 
  20. [20] J. L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. Oxford Ser. 7 (1936), 316-320. Zbl0015.41601
  21. [21] S. Tanno, A theorem on regular vector fields and its applications to almost contact structures, Tôhoku Math. J. 17 (1965), 235-243. Zbl0149.18903
  22. [22] S. Tanno, Quasi-Sasakian structures of rank 2p+1, J. Differential Geom. 5 (1971), 317-324. Zbl0221.53051
  23. [23] F. Tricerri, Some examples of locally conformal Kaehler manifolds, Rend. Sem. Mat. Univ. Politec. Torino 40 (1982), 81-92. Zbl0511.53068
  24. [24] I. Vaisman, Locally conformal Kaehler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284. Zbl0447.53032
  25. [25] I. Vaisman, Conformal change of almost contact metric structures, in: Proc. Conference on Differential Geometry, Haifa 1979, Lecture Notes in Math. 792, Springer, 1980. 
  26. [26] K. Yano and M. Kon, Structures On Manifolds, Ser. Pure Math., World Sci., 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.