Weak meromorphic extension

L. Hai; N. Khue; N. Nga

Colloquium Mathematicae (1993)

  • Volume: 64, Issue: 1, page 65-70
  • ISSN: 0010-1354

How to cite

top

Hai, L., Khue, N., and Nga, N.. "Weak meromorphic extension." Colloquium Mathematicae 64.1 (1993): 65-70. <http://eudml.org/doc/210174>.

@article{Hai1993,
author = {Hai, L., Khue, N., Nga, N.},
journal = {Colloquium Mathematicae},
keywords = {weak meromorphic extension; meromoprhic vector valued functions; weak extendibility},
language = {eng},
number = {1},
pages = {65-70},
title = {Weak meromorphic extension},
url = {http://eudml.org/doc/210174},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Hai, L.
AU - Khue, N.
AU - Nga, N.
TI - Weak meromorphic extension
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 1
SP - 65
EP - 70
LA - eng
KW - weak meromorphic extension; meromoprhic vector valued functions; weak extendibility
UR - http://eudml.org/doc/210174
ER -

References

top
  1. [1] P. K. Ban, N. V. Khue and N. T. Nga, Extending vector-valued meromorphic functions and locally biholomorphic maps in infinite dimension, Rev. Roumaine Math. Pures Appl. 36 (1991), 169-179. Zbl0759.46042
  2. [2] C. Bessaga and A. Pełczyński, On a class of B 0 -spaces, Bull. Acad. Polon. Sci. 5 (1957), 375-377. Zbl0077.31002
  3. [3] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. Zbl0343.32002
  4. [4] R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965. Zbl0141.08601
  5. [5] M. Harita, Continuation of meromorphic functions in a locally convex space, Mem. Fac. Sci. Kyushu Univ. Ser. A 41 (1987), 115-132. Zbl0666.32003
  6. [6] E. Ligocka and J. Siciak, Weak analytic continuation, Bull. Acad. Polon. Sci. Math. 20 (1972), 461-466. Zbl0241.46013
  7. [7] N. V. Khue, On meromorphic functions with values in locally convex spaces, Studia Math. 73 (1982), 201-211. Zbl0503.32013
  8. [8] N. V. Khue and B. D. Tac, Extending holomorphic maps from compact sets in infinite dimensions, ibid. 95 (1990), 263-272. Zbl0752.46029
  9. [9] J. Siciak, Weak analytic continuation from compact subsets of n , in: Lecture Notes in Math. 364, Springer, 1974, 92-95. 
  10. [10] L. Waelbroeck, Weak analytic functions and the closed graph theorem, ibid., 97-100. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.