# Weak meromorphic extension

Colloquium Mathematicae (1993)

- Volume: 64, Issue: 1, page 65-70
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topHai, L., Khue, N., and Nga, N.. "Weak meromorphic extension." Colloquium Mathematicae 64.1 (1993): 65-70. <http://eudml.org/doc/210174>.

@article{Hai1993,

author = {Hai, L., Khue, N., Nga, N.},

journal = {Colloquium Mathematicae},

keywords = {weak meromorphic extension; meromoprhic vector valued functions; weak extendibility},

language = {eng},

number = {1},

pages = {65-70},

title = {Weak meromorphic extension},

url = {http://eudml.org/doc/210174},

volume = {64},

year = {1993},

}

TY - JOUR

AU - Hai, L.

AU - Khue, N.

AU - Nga, N.

TI - Weak meromorphic extension

JO - Colloquium Mathematicae

PY - 1993

VL - 64

IS - 1

SP - 65

EP - 70

LA - eng

KW - weak meromorphic extension; meromoprhic vector valued functions; weak extendibility

UR - http://eudml.org/doc/210174

ER -

## References

top- [1] P. K. Ban, N. V. Khue and N. T. Nga, Extending vector-valued meromorphic functions and locally biholomorphic maps in infinite dimension, Rev. Roumaine Math. Pures Appl. 36 (1991), 169-179. Zbl0759.46042
- [2] C. Bessaga and A. Pełczyński, On a class of ${B}_{0}$-spaces, Bull. Acad. Polon. Sci. 5 (1957), 375-377. Zbl0077.31002
- [3] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. Zbl0343.32002
- [4] R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965. Zbl0141.08601
- [5] M. Harita, Continuation of meromorphic functions in a locally convex space, Mem. Fac. Sci. Kyushu Univ. Ser. A 41 (1987), 115-132. Zbl0666.32003
- [6] E. Ligocka and J. Siciak, Weak analytic continuation, Bull. Acad. Polon. Sci. Math. 20 (1972), 461-466. Zbl0241.46013
- [7] N. V. Khue, On meromorphic functions with values in locally convex spaces, Studia Math. 73 (1982), 201-211. Zbl0503.32013
- [8] N. V. Khue and B. D. Tac, Extending holomorphic maps from compact sets in infinite dimensions, ibid. 95 (1990), 263-272. Zbl0752.46029
- [9] J. Siciak, Weak analytic continuation from compact subsets of ${\u2102}^{n}$, in: Lecture Notes in Math. 364, Springer, 1974, 92-95.
- [10] L. Waelbroeck, Weak analytic functions and the closed graph theorem, ibid., 97-100.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.