Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on n and on compact Lie groups)

Giancarlo Travaglini

Colloquium Mathematicae (1993)

  • Volume: 65, Issue: 1, page 103-116
  • ISSN: 0010-1354

Abstract

top
We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity j = - N N e i j t = s i n ( ( N + ( 1 / 2 ) ) t ) / s i n ( ( 1 / 2 ) t ) . We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.

How to cite

top

Travaglini, Giancarlo. "Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on $^n$ and on compact Lie groups)." Colloquium Mathematicae 65.1 (1993): 103-116. <http://eudml.org/doc/210195>.

@article{Travaglini1993,
abstract = {We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity $∑_\{j=-N\}^N e^\{ijt\} = sin((N+(1/2))t) / sin((1/2)t)$. We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.},
author = {Travaglini, Giancarlo},
journal = {Colloquium Mathematicae},
keywords = {Fourier series on compact Lie groups; Lebesgue constants; polyhedral Dirichlet kernels; multiple Fourier series; approximation; summability; asymptotic formula},
language = {eng},
number = {1},
pages = {103-116},
title = {Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on $^n$ and on compact Lie groups)},
url = {http://eudml.org/doc/210195},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Travaglini, Giancarlo
TI - Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on $^n$ and on compact Lie groups)
JO - Colloquium Mathematicae
PY - 1993
VL - 65
IS - 1
SP - 103
EP - 116
AB - We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity $∑_{j=-N}^N e^{ijt} = sin((N+(1/2))t) / sin((1/2)t)$. We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.
LA - eng
KW - Fourier series on compact Lie groups; Lebesgue constants; polyhedral Dirichlet kernels; multiple Fourier series; approximation; summability; asymptotic formula
UR - http://eudml.org/doc/210195
ER -

References

top
  1. [1] S. A. Alimov, V. A. Il'in and E. M. Nikishin, Convergence problems for multiple trigonometric series and spectral decomposition, Russian Math. Surveys 31 (1976), 29-86. Zbl0367.42008
  2. [2] L. Brandolini, Estimates for Lebesgue constants in dimension two, Ann. Mat. Pura Appl. 156 (1990), 231-242. Zbl0778.42008
  3. [3] L. Brandolini, Fourier transform of characteristic functions and Lebesgue constants for multiple Fourier series, this volume, 51-59. Zbl0821.42009
  4. [4] A. Brondsted, An Introduction to Convex Polytopes, Springer, New York 1983. 
  5. [5] M. Carenini and P. M. Soardi, Sharp estimates for Lebesgue constants, Proc. Amer. Math. Soc. 89 (1983), 449-452. Zbl0523.42009
  6. [6] D. I. Cartwright and P. M. Soardi, Best conditions for the norm convergence of Fourier series, J. Approx. Theory 38 (1983), 344-353. Zbl0516.42020
  7. [7] F. Cazzaniga and G. Travaglini, On pointwise convergence and localization for Fourier series on compact Lie groups, Arch. Math. (Basel), to appear. Zbl0779.43003
  8. [8] J.-L. Clerc, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier (Grenoble) 24 (1) (1974), 149-172. Zbl0273.22011
  9. [9] L. Colzani, S. Giulini, G. Travaglini and M. Vignati, Pointwise convergence of Fourier series on compact Lie groups, Colloq. Math. 60/61 (1990), 379-386. Zbl0751.43008
  10. [10] C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744-745. Zbl0234.42008
  11. [11] S. Giulini and G. Travaglini, Sharp estimates for Lebesgue constants on compact Lie groups, J. Funct. Anal. 68 (1986), 106-116. Zbl0664.22008
  12. [12] C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. Zbl0059.09901
  13. [13] J. M. Lopez and K. A. Ross, Sidon Sets, Marcel Dekker, New York 1975. 
  14. [14] A. N. Podkorytov, Summation of multiple Fourier series over polyhedra, Vestnik Leningrad. Univ. Math. 13 (1981), 69-77. Zbl0477.42007
  15. [15] P. M. Soardi, Serie di Fourier in più variabili, U.M.I., Bologna 1984. 
  16. [16] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton 1971. Zbl0232.42007
  17. [17] V. S. Varadarajan, Lie Groups, Lie Algebras and their Representations, Prentice-Hall, Englewood Cliffs 1974. Zbl0371.22001
  18. [18] V. A. Yudin, Behaviour of Lebesgue constants, Mat. Zametki 17 (1975), 401-405 (in Russian). 
  19. [19] V. A. Yudin, Lower bound for Lebesgue constants, ibid. 25 (1979), 119-122 (in Russian). 
  20. [20] A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge 1968. Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.