On ergodic singular integral operators
Colloquium Mathematicae (1993)
- Volume: 66, Issue: 2, page 299-307
- ISSN: 0010-1354
Access Full Article
topHow to cite
topAlphonse, A., and Madan, Shobha. "On ergodic singular integral operators." Colloquium Mathematicae 66.2 (1993): 299-307. <http://eudml.org/doc/210250>.
@article{Alphonse1993,
author = {Alphonse, A., Madan, Shobha},
journal = {Colloquium Mathematicae},
keywords = {singular series operators; discrete analogues; singular integral operators; ergodic operators; spaces of Banach space valued functions},
language = {eng},
number = {2},
pages = {299-307},
title = {On ergodic singular integral operators},
url = {http://eudml.org/doc/210250},
volume = {66},
year = {1993},
}
TY - JOUR
AU - Alphonse, A.
AU - Madan, Shobha
TI - On ergodic singular integral operators
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 2
SP - 299
EP - 307
LA - eng
KW - singular series operators; discrete analogues; singular integral operators; ergodic operators; spaces of Banach space valued functions
UR - http://eudml.org/doc/210250
ER -
References
top- [1] E. Berkson, T. A. Gillespie and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. Zbl0609.47042
- [2] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163-168. Zbl0533.46008
- [3] J. Bourgain, Extension of a result of Benedek, Calderón and Panzone, ibid. 22 (1984), 91-95. Zbl0548.46022
- [4] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. on Harmonic Analysis in Honor of A. Zygmund (Chicago, Ill., 1981), Wadsworth, Belmont, Calif., 1983, 270-286.
- [5] D. L. Burkholder, A geometric characterization of UMD Banach spaces, Ann. Probab. 9 (1981), 997-1011. Zbl0474.60036
- [6] A. P. Calderón, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. Zbl0185.21806
- [7] R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977.
- [8] M. Cotlar, A unified theory of Hilbert transform and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105-167.
- [9] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [10] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
- [11] K. Petersen, Another proof of the existence of the ergodic Hilbert transform, Proc. Amer. Math. Soc. 88 (1983), 39-43. Zbl0521.28014
- [12] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory of operator-valued kernels, Adv. in Math. 62 (1986), 7-48. Zbl0627.42008
- [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [14] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. Zbl0621.42001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.