Some decidable theories with finitely many covers which are decidable and algorithmically found
Colloquium Mathematicae (1994)
- Volume: 67, Issue: 1, page 61-67
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topKalfa, Cornelia. "Some decidable theories with finitely many covers which are decidable and algorithmically found." Colloquium Mathematicae 67.1 (1994): 61-67. <http://eudml.org/doc/210263>.
@article{Kalfa1994,
abstract = {In any recursive algebraic language, I find an interval of the lattice of equational theories, every element of which has finitely many covers. With every finite set of equations of this language, an equational theory of this interval is associated, which is decidable with decidable covers that can be algorithmically found. If the language is finite, both this theory and its covers are finitely based. Also, for every finite language and for every natural number n, I construct a finitely based decidable theory together with its exactly n covers which are decidable and finitely based. The construction is algorithmic.},
author = {Kalfa, Cornelia},
journal = {Colloquium Mathematicae},
keywords = {algebraic language; finite basis; decidability; recursive first-order language; lattice of equational theories; covers},
language = {eng},
number = {1},
pages = {61-67},
title = {Some decidable theories with finitely many covers which are decidable and algorithmically found},
url = {http://eudml.org/doc/210263},
volume = {67},
year = {1994},
}
TY - JOUR
AU - Kalfa, Cornelia
TI - Some decidable theories with finitely many covers which are decidable and algorithmically found
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 61
EP - 67
AB - In any recursive algebraic language, I find an interval of the lattice of equational theories, every element of which has finitely many covers. With every finite set of equations of this language, an equational theory of this interval is associated, which is decidable with decidable covers that can be algorithmically found. If the language is finite, both this theory and its covers are finitely based. Also, for every finite language and for every natural number n, I construct a finitely based decidable theory together with its exactly n covers which are decidable and finitely based. The construction is algorithmic.
LA - eng
KW - algebraic language; finite basis; decidability; recursive first-order language; lattice of equational theories; covers
UR - http://eudml.org/doc/210263
ER -
References
top- [1] A. Ehrenfeucht, Decidability at the theory of one function, Notices Amer. Math. Soc. 6 (1959), 268.
- [2] J. Ježek, Primitive classes of algebras with unary and nullary operations, Colloq. Math. 20 (1969), 159-179. Zbl0188.04801
- [3] C. Kalfa, Covering relation in the language of mono-unary algebras with at most one constant symbol, Algebra Universalis 26 (1989), 143-148. Zbl0675.08002
- [4] G. F. McNulty, Covering in the lattice of equational theories and some properties of term finite theories, ibid. 15 (1982), 115-125. Zbl0509.08013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.