# Radial limits of superharmonic functions in the plane

Colloquium Mathematicae (1994)

- Volume: 67, Issue: 2, page 245-252
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topArmitage, D.. "Radial limits of superharmonic functions in the plane." Colloquium Mathematicae 67.2 (1994): 245-252. <http://eudml.org/doc/210277>.

@article{Armitage1994,

author = {Armitage, D.},

journal = {Colloquium Mathematicae},

keywords = {polar set; Baire category; harmonic function; superharmonic function},

language = {eng},

number = {2},

pages = {245-252},

title = {Radial limits of superharmonic functions in the plane},

url = {http://eudml.org/doc/210277},

volume = {67},

year = {1994},

}

TY - JOUR

AU - Armitage, D.

TI - Radial limits of superharmonic functions in the plane

JO - Colloquium Mathematicae

PY - 1994

VL - 67

IS - 2

SP - 245

EP - 252

LA - eng

KW - polar set; Baire category; harmonic function; superharmonic function

UR - http://eudml.org/doc/210277

ER -

## References

top- [1] L. V. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. 50 (1949), 341-346. Zbl0036.04702
- [2] D. H. Armitage, On the extension of superharmonic functions, J. London Math. Soc. (2) 4 (1971), 215-230. Zbl0223.31009
- [3] D. H. Armitage and M. Goldstein, Radial limiting behaviour of harmonic functions in cones, Complex Variables Theory Appl., to appear. Zbl0791.31007
- [4] V. S. Azarin, Generalization of a theorem of Hayman, on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.
- [5] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186-199. Zbl0058.06101
- [6] M. Brelot, Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965.
- [7] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 160-183. Zbl0447.30035
- [8] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71-82. Zbl0525.31002
- [9] L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969. Zbl0188.17203
- [10] W. J. Schneider, On the growth of entire functions along half rays, in: Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math. 11, Amer. Math. Soc., Providence, R.I., 1968, 377-385.
- [11] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. Zbl0087.28401

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.