Radial limits of superharmonic functions in the plane

D. Armitage

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 2, page 245-252
  • ISSN: 0010-1354

How to cite

top

Armitage, D.. "Radial limits of superharmonic functions in the plane." Colloquium Mathematicae 67.2 (1994): 245-252. <http://eudml.org/doc/210277>.

@article{Armitage1994,
author = {Armitage, D.},
journal = {Colloquium Mathematicae},
keywords = {polar set; Baire category; harmonic function; superharmonic function},
language = {eng},
number = {2},
pages = {245-252},
title = {Radial limits of superharmonic functions in the plane},
url = {http://eudml.org/doc/210277},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Armitage, D.
TI - Radial limits of superharmonic functions in the plane
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 2
SP - 245
EP - 252
LA - eng
KW - polar set; Baire category; harmonic function; superharmonic function
UR - http://eudml.org/doc/210277
ER -

References

top
  1. [1] L. V. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. 50 (1949), 341-346. Zbl0036.04702
  2. [2] D. H. Armitage, On the extension of superharmonic functions, J. London Math. Soc. (2) 4 (1971), 215-230. Zbl0223.31009
  3. [3] D. H. Armitage and M. Goldstein, Radial limiting behaviour of harmonic functions in cones, Complex Variables Theory Appl., to appear. Zbl0791.31007
  4. [4] V. S. Azarin, Generalization of a theorem of Hayman, on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138. 
  5. [5] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186-199. Zbl0058.06101
  6. [6] M. Brelot, Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965. 
  7. [7] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 160-183. Zbl0447.30035
  8. [8] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71-82. Zbl0525.31002
  9. [9] L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969. Zbl0188.17203
  10. [10] W. J. Schneider, On the growth of entire functions along half rays, in: Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math. 11, Amer. Math. Soc., Providence, R.I., 1968, 377-385. 
  11. [11] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. Zbl0087.28401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.