On boundedness properties of certain maximal operators
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 1, page 141-148
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Coifman, Y. Meyer et E. M. Stein, Un nouvel espace fonctionnel adapté à l'étude des opérateurs définis par des intégrales singulières, in: Lecture Notes in Math. 992, Springer, 1983, 1-15.
- [2] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. Zbl0222.26019
- [3] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Stud. 46, North-Holland, 1981. Zbl0449.42001
- [4] M. T. Menárguez, Discrete methods for weak type inequalities for maximal operators defined on weighted spaces, preprint.
- [5] M. T. Menárguez and F. Soria, Weak type inequalities for maximal convolution operators, Rend. Circ. Mat. Palermo 41 (1992), 342-352. Zbl0770.42013
- [6] F. J. Ruiz and J. L. Torrea, Weighted norm inequalities for a general maximal operator, Ark. Mat. 26 (1986), 327-340. Zbl0666.42015
- [7] F. J. Ruiz and J. L. Torrea, Weighted and vector-valued inequalities for potential operators, Trans. Amer. Math. Soc. 295 (1986), 213-232. Zbl0594.42014
- [8] A. Sánchez-Colomer and J. Soria, Weighted norm inequalities for general maximal operators and approach regions, preprint. Zbl0842.42009