A note on the integer solutions ofhyperelliptic equations
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 2, page 171-177
- ISSN: 0010-1354
Access Full Article
topHow to cite
topLe, Maohua. "A note on the integer solutions ofhyperelliptic equations." Colloquium Mathematicae 68.2 (1995): 171-177. <http://eudml.org/doc/210300>.
@article{Le1995,
author = {Le, Maohua},
journal = {Colloquium Mathematicae},
keywords = {hyperelliptic equations; higher degree diophantine equations},
language = {eng},
number = {2},
pages = {171-177},
title = {A note on the integer solutions ofhyperelliptic equations},
url = {http://eudml.org/doc/210300},
volume = {68},
year = {1995},
}
TY - JOUR
AU - Le, Maohua
TI - A note on the integer solutions ofhyperelliptic equations
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 171
EP - 177
LA - eng
KW - hyperelliptic equations; higher degree diophantine equations
UR - http://eudml.org/doc/210300
ER -
References
top- [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. Zbl0174.33803
- [2] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- [3] C. Ko, On the diophantine equation , xy ≠ 0, Sci. Sinica 14 (1964), 457-460.
- [4] V. A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation , Nouv. Ann. Math. (1) 9 (1850), 178-181.
- [5] W. J. LeVeque, On the equation , Acta Arith. 9 (1964), 209-219. Zbl0127.27201
- [6] W. Ljunggren, Noen setninger om ubestemte likninger av formen , Norsk. Mat. Tidsskr. 25 (1943), 17-20.
- [7] H. L. Montgomery and R. C. Vaughan, The order of magnitude of mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159. Zbl0577.10009
- [8] J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958.
- [9] A. Rotkiewicz and W. Złotkowski, On the diophantine equation , in: Number Theory, Vol. II (Budapest 1987), North-Holland, Amsterdam, 1990, 917-937.
- [10] V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian). Zbl0335.10021
- [11] P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172. Zbl0769.11017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.