A note on the integer solutions ofhyperelliptic equations

Maohua Le

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 2, page 171-177
  • ISSN: 0010-1354

How to cite

top

Le, Maohua. "A note on the integer solutions ofhyperelliptic equations." Colloquium Mathematicae 68.2 (1995): 171-177. <http://eudml.org/doc/210300>.

@article{Le1995,
author = {Le, Maohua},
journal = {Colloquium Mathematicae},
keywords = {hyperelliptic equations; higher degree diophantine equations},
language = {eng},
number = {2},
pages = {171-177},
title = {A note on the integer solutions ofhyperelliptic equations},
url = {http://eudml.org/doc/210300},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Le, Maohua
TI - A note on the integer solutions ofhyperelliptic equations
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 171
EP - 177
LA - eng
KW - hyperelliptic equations; higher degree diophantine equations
UR - http://eudml.org/doc/210300
ER -

References

top
  1. [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. Zbl0174.33803
  2. [2] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982. 
  3. [3] C. Ko, On the diophantine equation x 2 = y n + 1 , xy ≠ 0, Sci. Sinica 14 (1964), 457-460. 
  4. [4] V. A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation x m = y 2 + 1 , Nouv. Ann. Math. (1) 9 (1850), 178-181. 
  5. [5] W. J. LeVeque, On the equation y m = f ( x ) , Acta Arith. 9 (1964), 209-219. Zbl0127.27201
  6. [6] W. Ljunggren, Noen setninger om ubestemte likninger av formen ( x n - 1 ) / ( x - 1 ) = y q , Norsk. Mat. Tidsskr. 25 (1943), 17-20. 
  7. [7] H. L. Montgomery and R. C. Vaughan, The order of magnitude of mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159. Zbl0577.10009
  8. [8] J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958. 
  9. [9] A. Rotkiewicz and W. Złotkowski, On the diophantine equation 1 + p 1 α + . . . . . . + p k α = y 2 , in: Number Theory, Vol. II (Budapest 1987), North-Holland, Amsterdam, 1990, 917-937. 
  10. [10] V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian). Zbl0335.10021
  11. [11] P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172. Zbl0769.11017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.