Almost Everywhere Convergence of Riesz-Raikov Series
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 2, page 241-248
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topFan, Ai. "Almost Everywhere Convergence of Riesz-Raikov Series." Colloquium Mathematicae 68.2 (1995): 241-248. <http://eudml.org/doc/210308>.
@article{Fan1995,
abstract = {Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_\{n=1\}^\{∞\} c_n f(T^\{n\}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_\{n=1\}^\{∞\} |c_n|^2 log^\{2\}n < ∞$.},
author = {Fan, Ai},
journal = {Colloquium Mathematicae},
keywords = {Riesz-Raikov series; quasi-orthogonality; Bernoulli measures},
language = {eng},
number = {2},
pages = {241-248},
title = {Almost Everywhere Convergence of Riesz-Raikov Series},
url = {http://eudml.org/doc/210308},
volume = {68},
year = {1995},
}
TY - JOUR
AU - Fan, Ai
TI - Almost Everywhere Convergence of Riesz-Raikov Series
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 241
EP - 248
AB - Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_{n=1}^{∞} c_n f(T^{n}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_{n=1}^{∞} |c_n|^2 log^{2}n < ∞$.
LA - eng
KW - Riesz-Raikov series; quasi-orthogonality; Bernoulli measures
UR - http://eudml.org/doc/210308
ER -
References
top- [1] G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynamical Systems, 11 (1991), 279-307. Zbl0739.58032
- [2] M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235-243. Zbl0032.27402
- [3] S. Kakutani and K. Petersen, The speed of convergence in the Ergodic Theorem, Monatsh. Math. 91 (1981), 11-18. Zbl0446.28015
- [4] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
- [5] D. A. Raikov, On some arithmetical properties of summable functions, Mat. Sb. 1 (43) (1936), 377-384 (in Russian). Zbl0014.39701
- [6] F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944-1945), 217-248.
- [7] J. Rosenblatt, Convergence of series of translations, Math. Ann. 230 (1977), 245-272. Zbl0341.40002
- [8] J. Rosenblatt and A. del Junco, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197. Zbl0398.28021
- [9] A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 1959.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.