Almost Everywhere Convergence of Riesz-Raikov Series

Ai Fan

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 2, page 241-248
  • ISSN: 0010-1354

Abstract

top
Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series n = 1 c n f ( T n x ) converges almost everywhere with respect to Lebesgue measure provided that n = 1 | c n | 2 l o g 2 n < .

How to cite

top

Fan, Ai. "Almost Everywhere Convergence of Riesz-Raikov Series." Colloquium Mathematicae 68.2 (1995): 241-248. <http://eudml.org/doc/210308>.

@article{Fan1995,
abstract = {Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_\{n=1\}^\{∞\} c_n f(T^\{n\}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_\{n=1\}^\{∞\} |c_n|^2 log^\{2\}n < ∞$.},
author = {Fan, Ai},
journal = {Colloquium Mathematicae},
keywords = {Riesz-Raikov series; quasi-orthogonality; Bernoulli measures},
language = {eng},
number = {2},
pages = {241-248},
title = {Almost Everywhere Convergence of Riesz-Raikov Series},
url = {http://eudml.org/doc/210308},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Fan, Ai
TI - Almost Everywhere Convergence of Riesz-Raikov Series
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 241
EP - 248
AB - Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_{n=1}^{∞} c_n f(T^{n}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_{n=1}^{∞} |c_n|^2 log^{2}n < ∞$.
LA - eng
KW - Riesz-Raikov series; quasi-orthogonality; Bernoulli measures
UR - http://eudml.org/doc/210308
ER -

References

top
  1. [1] G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynamical Systems, 11 (1991), 279-307. Zbl0739.58032
  2. [2] M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235-243. Zbl0032.27402
  3. [3] S. Kakutani and K. Petersen, The speed of convergence in the Ergodic Theorem, Monatsh. Math. 91 (1981), 11-18. Zbl0446.28015
  4. [4] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983. 
  5. [5] D. A. Raikov, On some arithmetical properties of summable functions, Mat. Sb. 1 (43) (1936), 377-384 (in Russian). Zbl0014.39701
  6. [6] F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944-1945), 217-248. 
  7. [7] J. Rosenblatt, Convergence of series of translations, Math. Ann. 230 (1977), 245-272. Zbl0341.40002
  8. [8] J. Rosenblatt and A. del Junco, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197. Zbl0398.28021
  9. [9] A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 1959. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.