Stochastic viability and a comparison theorem
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 2, page 297-316
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.-P. Aubin, Viability theory, to appear. Zbl1179.93001
- [2] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, 1984. Zbl0538.34007
- [3] J.-P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa 27 (1990), 595-694.
- [4] J.-P. Aubin and G. Da Prato, Stochastic Nagumo's viability theorem, Cahiers de Mathématiques de la Décision 9224, CEREMADE. Zbl0816.60053
- [5] K. Borsuk, Multidimensional Analytic Geometry, PWN, 1969.
- [6] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Adv. Books and Software, Wadsworth, Belmont, Calif., 1984. Zbl0554.60075
- [7] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, 1986. Zbl0592.60049
- [8] S. Gautier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (1993), 1395-1414. Zbl0780.93085
- [9] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, 1972. Zbl0242.60003
- [10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981. Zbl0495.60005
- [11] D. Isaacson, Stochastic integrals and derivatives, Ann. Math. Statist. 40 (1969), 1610-1616. Zbl0181.43504
- [12] A. Milian, A note on the stochastic invariance for Itô equations, Bull. Polish Acad. Sci. Math. 41 (1993), 139-150. Zbl0796.60071
- [13] B. N. Pshenichnyĭ, Convex Analysis and Extremal Problems, Nauka, Moscow, 1980 (in Russian). Zbl0477.90034
- [14] J. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. Math. 1965.
- [15] C. Yoerp, Sur la dérivation des intégrales stochastiques, in: Sém. Probab. XV, Lecture Notes in Math. 784, Springer, 1980, 249-253.