Stochastic viability and a comparison theorem

Anna Milian

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 2, page 297-316
  • ISSN: 0010-1354

Abstract

top
We give explicit necessary and sufficient conditions for the viability of polyhedrons with respect to Itô equations. Using the viability criterion we obtain a comparison theorem for multi-dimensional Itô processes

How to cite

top

Milian, Anna. "Stochastic viability and a comparison theorem." Colloquium Mathematicae 68.2 (1995): 297-316. <http://eudml.org/doc/210314>.

@article{Milian1995,
abstract = {We give explicit necessary and sufficient conditions for the viability of polyhedrons with respect to Itô equations. Using the viability criterion we obtain a comparison theorem for multi-dimensional Itô processes},
author = {Milian, Anna},
journal = {Colloquium Mathematicae},
keywords = {Itô equation; Wiener process; stochastic viability for a convex polyhedron; comparison theorems},
language = {eng},
number = {2},
pages = {297-316},
title = {Stochastic viability and a comparison theorem},
url = {http://eudml.org/doc/210314},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Milian, Anna
TI - Stochastic viability and a comparison theorem
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 297
EP - 316
AB - We give explicit necessary and sufficient conditions for the viability of polyhedrons with respect to Itô equations. Using the viability criterion we obtain a comparison theorem for multi-dimensional Itô processes
LA - eng
KW - Itô equation; Wiener process; stochastic viability for a convex polyhedron; comparison theorems
UR - http://eudml.org/doc/210314
ER -

References

top
  1. [1] J.-P. Aubin, Viability theory, to appear. Zbl1179.93001
  2. [2] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, 1984. Zbl0538.34007
  3. [3] J.-P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa 27 (1990), 595-694. 
  4. [4] J.-P. Aubin and G. Da Prato, Stochastic Nagumo's viability theorem, Cahiers de Mathématiques de la Décision 9224, CEREMADE. Zbl0816.60053
  5. [5] K. Borsuk, Multidimensional Analytic Geometry, PWN, 1969. 
  6. [6] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Adv. Books and Software, Wadsworth, Belmont, Calif., 1984. Zbl0554.60075
  7. [7] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, 1986. Zbl0592.60049
  8. [8] S. Gautier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (1993), 1395-1414. Zbl0780.93085
  9. [9] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, 1972. Zbl0242.60003
  10. [10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981. Zbl0495.60005
  11. [11] D. Isaacson, Stochastic integrals and derivatives, Ann. Math. Statist. 40 (1969), 1610-1616. Zbl0181.43504
  12. [12] A. Milian, A note on the stochastic invariance for Itô equations, Bull. Polish Acad. Sci. Math. 41 (1993), 139-150. Zbl0796.60071
  13. [13] B. N. Pshenichnyĭ, Convex Analysis and Extremal Problems, Nauka, Moscow, 1980 (in Russian). Zbl0477.90034
  14. [14] J. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. Math. 1965. 
  15. [15] C. Yoerp, Sur la dérivation des intégrales stochastiques, in: Sém. Probab. XV, Lecture Notes in Math. 784, Springer, 1980, 249-253. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.