On the volume method in the study of Auerbach bases of finite-dimensional normed spaces

Anatolij Plichko

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 2, page 267-270
  • ISSN: 0010-1354

Abstract

top
In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach bases and (iii) the finite-dimensional normed space X is an inner product space provided any two Auerbach bases are isometrically equivalent. Property (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J. Knowles and T. A. Cook [7].

How to cite

top

Plichko, Anatolij. "On the volume method in the study of Auerbach bases of finite-dimensional normed spaces." Colloquium Mathematicae 69.2 (1996): 267-270. <http://eudml.org/doc/210339>.

@article{Plichko1996,
abstract = {In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach bases and (iii) the finite-dimensional normed space X is an inner product space provided any two Auerbach bases are isometrically equivalent. Property (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J. Knowles and T. A. Cook [7].},
author = {Plichko, Anatolij},
journal = {Colloquium Mathematicae},
keywords = {minimal volume of -dimensional parallelepipeds; maximal volume of -dimensional crosspolytopes; orthogonality; Auerbach bases},
language = {eng},
number = {2},
pages = {267-270},
title = {On the volume method in the study of Auerbach bases of finite-dimensional normed spaces},
url = {http://eudml.org/doc/210339},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Plichko, Anatolij
TI - On the volume method in the study of Auerbach bases of finite-dimensional normed spaces
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 267
EP - 270
AB - In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach bases and (iii) the finite-dimensional normed space X is an inner product space provided any two Auerbach bases are isometrically equivalent. Property (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J. Knowles and T. A. Cook [7].
LA - eng
KW - minimal volume of -dimensional parallelepipeds; maximal volume of -dimensional crosspolytopes; orthogonality; Auerbach bases
UR - http://eudml.org/doc/210339
ER -

References

top
  1. [1] H. Auerbach, O polu krzywych wypukłych o średnicach sprzężonych (On the area of convex curves with conjugate diameters), Ph.D. thesis, L'viv University, 1930 (in Polish). 
  2. [2] H. Auerbach, Über eine Eigenschaft der Eilinien mit Mittelpunkt, Ann. Soc. Polon. Math. 9 (1930), 204. 
  3. [3] H. Auerbach, Sur les groupes linéaires bornés, I-III, Studia Math. 4 (1933), 113-127, 158-166; 5 (1934), 43-49. Zbl59.1093.05
  4. [4] S. Banach, Théorie des opérations linéaires, Warszawa, 1932. Zbl0005.20901
  5. [5] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319. Zbl0034.25301
  6. [6] R. C. James, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559-566. Zbl0041.43701
  7. [7] R. J. Knowles and T. A. Cook, Some results on Auerbach bases for finite-dimensional normed spaces, Bull. Soc. Roy. Sci. Liège 42 (1973), 518-522. Zbl0275.46011
  8. [8] H. Lenz, Eine Kennzeichnung des Ellipsoids, Arch. Math. (Basel) 8 (1957), 209-211. Zbl0078.35802
  9. [9] A. Yu. Levin and Yu. I. Petunin, Some questions connected with the notion of orthogonality in a Banach space, Uspekhi Mat. Nauk 18 (3) (1963), 167-170 (in Russian). Zbl0171.33302
  10. [10] A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in n , Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148. Zbl0718.52007
  11. [11] A. Pietsch, Operator Ideals, Deutsch. Verlag Wiss., Berlin, 1978. 
  12. [12] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, Dordrecht-Warszawa, 1985. 
  13. [13] A. F. Ruston, Auerbach's theorem and tensor products of Banach spaces, Proc. Cambridge Philos. Soc. 58 (1962), 476-480. Zbl0108.10902
  14. [14] A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), 614-616. Zbl0031.40502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.