Characterization of the boundedness for a family of commutators on L p

Song Li

Colloquium Mathematicae (1996)

  • Volume: 70, Issue: 1, page 59-71
  • ISSN: 0010-1354

How to cite

top

Li, Song. "Characterization of the boundedness for a family of commutators on $L^p$." Colloquium Mathematicae 70.1 (1996): 59-71. <http://eudml.org/doc/210396>.

@article{Li1996,
author = {Li, Song},
journal = {Colloquium Mathematicae},
keywords = { boundedness; commutators; singular integral operator},
language = {eng},
number = {1},
pages = {59-71},
title = {Characterization of the boundedness for a family of commutators on $L^p$},
url = {http://eudml.org/doc/210396},
volume = {70},
year = {1996},
}

TY - JOUR
AU - Li, Song
TI - Characterization of the boundedness for a family of commutators on $L^p$
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 59
EP - 71
LA - eng
KW - boundedness; commutators; singular integral operator
UR - http://eudml.org/doc/210396
ER -

References

top
  1. [1] F. Beatrous and S.-Y. Li, Boundedness and compactness of operators of Hankel type, J. Funct. Anal. 111 (1993), 350-379. Zbl0793.47022
  2. [2] M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conf. Ser. in Math. 77, Amer. Math. Soc., 1990. 
  3. [3] M. Christ and D. Geller, Singular integral characterizations of Hardy spaces on homogeneous groups, Duke Math. J. 51 (1984), 547-598. Zbl0601.43003
  4. [4] R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. Zbl0864.42009
  5. [5] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Zbl0326.32011
  6. [6] R. R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. Zbl0224.43006
  7. [7] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  8. [8] S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504. Zbl0644.47046
  9. [9] S. Janson and T. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310. Zbl0508.42022
  10. [10] S. G. Krantz and S.-Y. Li, On the decomposition theorems for Hardy spaces and applications in domains in n , J. Fourier Anal., to appear. 
  11. [11] S. G. Krantz and S.-Y. Li, Hardy spaces, integral operators on spaces of homogeneous type, preprint, 1994. 
  12. [12] S. G. Krantz and S.-Y. Li, Factorizations of functions in subspaces of L 1 and applications to Corona problem, preprint, 1995. 
  13. [13] C. Li, Boundedness of paracommutators on L p spaces, Acta Math. Sinica 6 (1990), 131-147. Zbl0712.42034
  14. [14] C. Li, A. McIntosh and S. Semmes, Convolution singular integrals on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), 455-481. Zbl0763.42009
  15. [15] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. Zbl0699.47012
  16. [16] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, N.J., 1993. Zbl0821.42001
  17. [17] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971. Zbl0232.42007
  18. [18] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math J. 30 (1978), 163-171. Zbl0384.47023
  19. [19] A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of B M O ( n ) , Acta Math. 148 (1982), 215-241. Zbl0514.46018
  20. [20] Z. Wu, Clifford algebra, Hardy spaces and compensated compactness, preprint, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.