# Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields

Colloquium Mathematicae (1996)

- Volume: 70, Issue: 2, page 195-217
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topMoulin Ollagnier, Jean. "Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields." Colloquium Mathematicae 70.2 (1996): 195-217. <http://eudml.org/doc/210406>.

@article{MoulinOllagnier1996,

abstract = {Given a 3-dimensional vector field V with coordinates $V_x$, $V_y$ and $V_z$ that are homogeneous polynomials in the ring k[x,y,z], we give a necessary and sufficient condition for the existence of a Liouvillian first integral of V which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in the ring k[x,y,z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaff and orthogonal to the vector field V. Thus, our theorem links the existence of an object that belongs to some level of an extension tower with the existence of objects defined by means of the base differential ring k[x,y,z]. A self-contained proof of this result is given in the language of differential algebra. This method of finding first integrals in a given class of functions is an extension of the compatibility method introduced by J.-M. Strelcyn and S. Wojciechowski; and an old method of Darboux is a special case of it. We discuss all these relations and argue for the practical interest of our characterization despite an old open algorithmic problem.},

author = {Moulin Ollagnier, Jean},

journal = {Colloquium Mathematicae},

keywords = {Liouvillian first integral; compatibility method},

language = {eng},

number = {2},

pages = {195-217},

title = {Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields},

url = {http://eudml.org/doc/210406},

volume = {70},

year = {1996},

}

TY - JOUR

AU - Moulin Ollagnier, Jean

TI - Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields

JO - Colloquium Mathematicae

PY - 1996

VL - 70

IS - 2

SP - 195

EP - 217

AB - Given a 3-dimensional vector field V with coordinates $V_x$, $V_y$ and $V_z$ that are homogeneous polynomials in the ring k[x,y,z], we give a necessary and sufficient condition for the existence of a Liouvillian first integral of V which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in the ring k[x,y,z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaff and orthogonal to the vector field V. Thus, our theorem links the existence of an object that belongs to some level of an extension tower with the existence of objects defined by means of the base differential ring k[x,y,z]. A self-contained proof of this result is given in the language of differential algebra. This method of finding first integrals in a given class of functions is an extension of the compatibility method introduced by J.-M. Strelcyn and S. Wojciechowski; and an old method of Darboux is a special case of it. We discuss all these relations and argue for the practical interest of our characterization despite an old open algorithmic problem.

LA - eng

KW - Liouvillian first integral; compatibility method

UR - http://eudml.org/doc/210406

ER -

## References

top- [1] C. Camacho and A. Lins Neto, The topology of integrable differentiable forms near a singularity, Publ. Math. IHES 55 (1982), 5-36. Zbl0505.58026
- [2] H. Cartan, Formes différentielles, Hermann, Paris, 1967.
- [3] D. Cerveau, Equations différentielles algébriques: remarques et problèmes, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 665-680. Zbl0698.58047
- [4] D. Cerveau et F. Maghous, Feuilletages algébriques de ${C}^{n}$, C. R. Acad. Sci. Paris 303 (1986), 643-645.
- [5] D. Cerveau et J. F. Mattei, Formes intégrables holomorphes singulières, Astérisque 97 (1982). Zbl0545.32006
- [6] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sci. Math. 2 (1878), 60-96, 123-144, 151-200. Zbl10.0214.01
- [7] B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Integrals of quadratic ordinary differential equations in ${\mathbb{R}}^{3}$: the Lotka-Volterra system, Phys. A 163 (1990), 683-722. Zbl0714.34005
- [8] J.-P. Jouanolou, Equations de Pfaff algébriques, Lecture Notes in Math. 708, Springer, Berlin, 1979.
- [9] J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, On the non-existence of constants of derivations: the proof of a theorem of Jouanolou's and its development, Bull. Sci. Math. 119 (1995), 195-233. Zbl0855.34010
- [10] J. Moulin Ollagnier and J.-M. Strelcyn, On first integrals of linear systems, Frobenius integrability theorem and linear representations of Lie algebras, in: Bifurcations of Planar Vector Fields, Proceedings, Luminy 1989, J.-P. Françoise and R. Roussarie (eds.), Lecture Notes in Math. 1455, Springer, Berlin, 1991. Zbl0714.34002
- [11] H. Poincaré, Sur l'intégration algébrique des équations différentielles, C. R. Acad. Sci. Paris 112 (1891), 761-764; reprinted in Œ uvres, tome III, Gauthier-Villars, Paris, 1965, 32-34. Zbl23.0319.01
- [12] H. Poincaré, Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 5 (1891), 161-191; reprinted in Œ uvres, tome III, Gauthier-Villars, Paris, 1965, 35-58. Zbl23.0319.01
- [13] H. Poincaré, Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 11 (1897), 193-239; reprinted in Œ uvres, tome III, Gauthier-Villars, Paris, 1965, 59-94. Zbl28.0292.01
- [14] M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1983), 215-229. Zbl0527.12016
- [15] R. H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc. 139 (1969), 167-189. Zbl0184.06702
- [16] M. Rosenlicht, On Liouville's theory of elementary functions, Pacific J. Math. 65 (1976), 485-492. Zbl0318.12107
- [17] M. F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), 673-688. Zbl0756.12006
- [18] J.-M. Strelcyn and S. Wojciechowski, A method of finding integrals of 3-dimensional dynamical systems, Phys. Lett. A 133 (1988), 207-212.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.