Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions

Paweł Strzelecki

Colloquium Mathematicae (1996)

  • Volume: 70, Issue: 2, page 271-289
  • ISSN: 0010-1354

Abstract

top
We prove that minimizers u W 1 , n of the functional E ( u ) = 1 / n | u | n d x + 1 / ( 4 n ) ( 1 - | u | 2 ) 2 d x , ⊂ n , n ≥ 3, which satisfy the Dirichlet boundary condition u = g on for g: → S n - 1 with zero topological degree, converge in W 1 , n and C l o c α for any α<1 - upon passing to a subsequence k 0 - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.

How to cite

top

Strzelecki, Paweł. "Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions." Colloquium Mathematicae 70.2 (1996): 271-289. <http://eudml.org/doc/210412>.

@article{Strzelecki1996,
abstract = {We prove that minimizers $u ∈ W^\{1,n\}$ of the functional $E_\{\}(u) = 1/n ∫_ |∇u|^\{n\} dx + 1/(4^\{n\}) ∫_ (1-|u|^\{2\})^\{2\} dx$, ⊂ $ℝ^\{n\}$, n ≥ 3, which satisfy the Dirichlet boundary condition $u_\{\} = g$ on for g: → $S^\{n-1\}$ with zero topological degree, converge in $W^\{1,n\}$ and $C^α_\{loc\}$ for any α<1 - upon passing to a subsequence $_\{k\} → 0$ - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.},
author = {Strzelecki, Paweł},
journal = {Colloquium Mathematicae},
keywords = {-harmonic map; nonunique asymptotic behaviour},
language = {eng},
number = {2},
pages = {271-289},
title = {Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions},
url = {http://eudml.org/doc/210412},
volume = {70},
year = {1996},
}

TY - JOUR
AU - Strzelecki, Paweł
TI - Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 2
SP - 271
EP - 289
AB - We prove that minimizers $u ∈ W^{1,n}$ of the functional $E_{}(u) = 1/n ∫_ |∇u|^{n} dx + 1/(4^{n}) ∫_ (1-|u|^{2})^{2} dx$, ⊂ $ℝ^{n}$, n ≥ 3, which satisfy the Dirichlet boundary condition $u_{} = g$ on for g: → $S^{n-1}$ with zero topological degree, converge in $W^{1,n}$ and $C^α_{loc}$ for any α<1 - upon passing to a subsequence $_{k} → 0$ - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.
LA - eng
KW - -harmonic map; nonunique asymptotic behaviour
UR - http://eudml.org/doc/210412
ER -

References

top
  1. [1] F. Bethuel, H. Brezis et F. Hélein, Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris 314 (1992) 891-895. Zbl0773.49003
  2. [2] F. Bethuel, H. Brezis et F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations and PDE 1 (1993), 123-148. Zbl0834.35014
  3. [3] F. Bethuel, H. Brezis et F. Hélein, Tourbillons de Ginzburg-Landau et energie renormalisée, C. R. Acad. Sci. Paris 317 (1993), 165-171. 
  4. [4] F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau Vortices, Progr. Nonlinear Differential Equations Appl. 13, Birkhäuser, Boston, 1994. 
  5. [5] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60-75. Zbl0657.46027
  6. [6] B. Bojarski and T. Iwaniec, p-harmonic equation and quasiregular mappings, in: Banach Center Publ. 19, PWN, Warszawa, 1987, 25-38. 
  7. [7] E. DiBenedetto and A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 349 (1984), 83-128. Zbl0527.35038
  8. [8] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. 
  9. [9] Z. Han and Y. Li, Degenerate elliptic systems and applications to Ginzburg-Landau type equations, I, preprint, Rutgers University, 1995. 
  10. [10] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystals theory, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985-1986), Pitman Res. Notes Math. Ser. 181, Longman Sci. Tech., 1988, 276-289. 
  11. [11] R. Hardt, D. Kinderlehrer and F. H. Lin, The variety of configurations of static liquid crystals, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), Variational Methods, Birkhäuser, 1990, 115-131. Zbl0723.58018
  12. [12] M. C. Hong, Asymptotic behavior for minimizers of a Ginzburg-Landau functional in higher dimensions associated with n-harmonic maps, preprint, 1995. 
  13. [13] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. Zbl0372.35030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.