A note on the diophantine equation ( x 2 - 1 ) ( y 2 - 1 ) = ( z 2 - 1 ) 2

Huaming Wu; Maohua Le

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 1, page 133-136
  • ISSN: 0010-1354

How to cite

top

Wu, Huaming, and Le, Maohua. "A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$." Colloquium Mathematicae 71.1 (1996): 133-136. <http://eudml.org/doc/210418>.

@article{Wu1996,
author = {Wu, Huaming, Le, Maohua},
journal = {Colloquium Mathematicae},
keywords = {quartic diophantine equations; quadratic diophantine equations; divisibility conditions},
language = {eng},
number = {1},
pages = {133-136},
title = {A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$},
url = {http://eudml.org/doc/210418},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Wu, Huaming
AU - Le, Maohua
TI - A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 133
EP - 136
LA - eng
KW - quartic diophantine equations; quadratic diophantine equations; divisibility conditions
UR - http://eudml.org/doc/210418
ER -

References

top
  1. [1] Z.-F. Cao, A generalization of the Schinzel-Sierpiński system of equations, J. Harbin Inst. Tech. 23 (5) (1991), 9-14 (in Chinese). Zbl0971.11503
  2. [2] A. Grelak, On the diophantine equation ( x 2 - 1 ) ( y 2 - 1 ) = ( z 2 - 1 ) 2 , Discuss. Math. 5 (1982), 41-43. Zbl0507.10009
  3. [3] A. Schinzel and W. Sierpiński, Sur l’équation diophantienne ( x 2 - 1 ) ( y 2 - 1 ) = [ ( ( y - x ) / 2 ) 2 - 1 ] 2 , Elem. Math. 18 (1963), 132-133. Zbl0126.07301
  4. [4] Y.-B. Wang, On the diophantine equation ( x 2 - 1 ) ( y 2 - 1 ) = ( z 2 - 1 ) 2 , Heilongjiang Daxue Ziran Kexue Xuebao 1989, (4), 84-85 (in Chinese). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.