# A note on the diophantine equation $({x}^{2}-1)({y}^{2}-1)={({z}^{2}-1)}^{2}$

Colloquium Mathematicae (1996)

- Volume: 71, Issue: 1, page 133-136
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topWu, Huaming, and Le, Maohua. "A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$." Colloquium Mathematicae 71.1 (1996): 133-136. <http://eudml.org/doc/210418>.

@article{Wu1996,

author = {Wu, Huaming, Le, Maohua},

journal = {Colloquium Mathematicae},

keywords = {quartic diophantine equations; quadratic diophantine equations; divisibility conditions},

language = {eng},

number = {1},

pages = {133-136},

title = {A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$},

url = {http://eudml.org/doc/210418},

volume = {71},

year = {1996},

}

TY - JOUR

AU - Wu, Huaming

AU - Le, Maohua

TI - A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$

JO - Colloquium Mathematicae

PY - 1996

VL - 71

IS - 1

SP - 133

EP - 136

LA - eng

KW - quartic diophantine equations; quadratic diophantine equations; divisibility conditions

UR - http://eudml.org/doc/210418

ER -

## References

top- [1] Z.-F. Cao, A generalization of the Schinzel-Sierpiński system of equations, J. Harbin Inst. Tech. 23 (5) (1991), 9-14 (in Chinese). Zbl0971.11503
- [2] A. Grelak, On the diophantine equation $({x}^{2}-1)({y}^{2}-1)={({z}^{2}-1)}^{2}$, Discuss. Math. 5 (1982), 41-43. Zbl0507.10009
- [3] A. Schinzel and W. Sierpiński, Sur l’équation diophantienne $({x}^{2}-1)({y}^{2}-1)={[{((y-x)/2)}^{2}-1]}^{2}$, Elem. Math. 18 (1963), 132-133. Zbl0126.07301
- [4] Y.-B. Wang, On the diophantine equation $({x}^{2}-1)({y}^{2}-1)={({z}^{2}-1)}^{2}$, Heilongjiang Daxue Ziran Kexue Xuebao 1989, (4), 84-85 (in Chinese).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.