A note on the diophantine equation ( x 2 - 1 ) ( y 2 - 1 ) = ( z 2 - 1 ) 2

Huaming Wu; Maohua Le

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 1, page 133-136
  • ISSN: 0010-1354

How to cite

top

Wu, Huaming, and Le, Maohua. "A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$." Colloquium Mathematicae 71.1 (1996): 133-136. <http://eudml.org/doc/210418>.

@article{Wu1996,
author = {Wu, Huaming, Le, Maohua},
journal = {Colloquium Mathematicae},
keywords = {quartic diophantine equations; quadratic diophantine equations; divisibility conditions},
language = {eng},
number = {1},
pages = {133-136},
title = {A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$},
url = {http://eudml.org/doc/210418},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Wu, Huaming
AU - Le, Maohua
TI - A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 133
EP - 136
LA - eng
KW - quartic diophantine equations; quadratic diophantine equations; divisibility conditions
UR - http://eudml.org/doc/210418
ER -

References

top
  1. [1] Z.-F. Cao, A generalization of the Schinzel-Sierpiński system of equations, J. Harbin Inst. Tech. 23 (5) (1991), 9-14 (in Chinese). Zbl0971.11503
  2. [2] A. Grelak, On the diophantine equation ( x 2 - 1 ) ( y 2 - 1 ) = ( z 2 - 1 ) 2 , Discuss. Math. 5 (1982), 41-43. Zbl0507.10009
  3. [3] A. Schinzel and W. Sierpiński, Sur l’équation diophantienne ( x 2 - 1 ) ( y 2 - 1 ) = [ ( ( y - x ) / 2 ) 2 - 1 ] 2 , Elem. Math. 18 (1963), 132-133. Zbl0126.07301
  4. [4] Y.-B. Wang, On the diophantine equation ( x 2 - 1 ) ( y 2 - 1 ) = ( z 2 - 1 ) 2 , Heilongjiang Daxue Ziran Kexue Xuebao 1989, (4), 84-85 (in Chinese). 

NotesEmbed ?

top

You must be logged in to post comments.