Pełczyński's Property (V) on spaces of vector-valued functions
Colloquium Mathematicae (1996)
- Volume: 71, Issue: 1, page 63-78
- ISSN: 0010-1354
Access Full Article
topHow to cite
topRandrianantoanina, Narcisse. "Pełczyński's Property (V) on spaces of vector-valued functions." Colloquium Mathematicae 71.1 (1996): 63-78. <http://eudml.org/doc/210428>.
@article{Randrianantoanina1996,
author = {Randrianantoanina, Narcisse},
journal = {Colloquium Mathematicae},
keywords = {property (V)},
language = {eng},
number = {1},
pages = {63-78},
title = {Pełczyński's Property (V) on spaces of vector-valued functions},
url = {http://eudml.org/doc/210428},
volume = {71},
year = {1996},
}
TY - JOUR
AU - Randrianantoanina, Narcisse
TI - Pełczyński's Property (V) on spaces of vector-valued functions
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 63
EP - 78
LA - eng
KW - property (V)
UR - http://eudml.org/doc/210428
ER -
References
top- [1] F. Bombal, On subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), 107-112. Zbl0634.46019
- [2] F. Bombal, On sets and Pełczynski’s property , Glasgow Math. J. 32 (1990), 109-120. Zbl0693.46013
- [3] J. Bourgain, is a Grothendieck space, Studia Math. 75 (1983), 193-216. Zbl0533.46035
- [4] J. Bourgain, On weak compactness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), 111-118. Zbl0521.46016
- [5] P. Cembranos, N. J. Kalton, E. Saab and P. Saab, Pełczyński's property (V) on C(𝜴, E) spaces, Math. Ann. 271 (1985), 91-97. Zbl0546.46029
- [6] D. L. Cohn, Measure Theory, Birkhäuser, 1980.
- [7] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294. Zbl0361.46048
- [8] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- [9] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [10] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- [11] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1990), 307-318. Zbl0676.46006
- [12] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 1969. Zbl0179.46303
- [13] S. V. Kisliakov, Uncomplemented uniform algebras, Mat. Zametki 18 (1975), 91-96 (in Russian).
- [14] J. Munkres, Topology. A First Course, Prentice-Hall, Englewood Cliffs, N.J. 1975.
- [15] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648. Zbl0107.32504
- [16] H. Pfitzner, Weak compactness in the dual of a -algebra is determined commutatively, Math. Ann. 298 (1994), 349-371. Zbl0791.46035
- [17] N. Randrianantoanina, Complemented copies of and Pełczyński’s property in Bochner spaces, Canad. J. Math., to appear. Zbl0858.46029
- [18] H. P. Rosenthal, A characterization of Banach spaces containing , J. Amer. Math. Soc. 7 (1994), 707-747. Zbl0824.46010
- [19] W. Ruess, Duality and geometry of spaces of compact operators, in: North-Holland Math. Stud. 90, North-Holland, 1984, 59-78. Zbl0573.46007
- [20] E. Saab and P. Saab, Stability problems in Banach spaces, in: Lecture Notes in Pure and Appl. Math. 136, Dekker, 1992, 367-394. Zbl0787.46022
- [21] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
- [22] M. Talagrand, Weak Cauchy sequences in , Amer. J. Math. 106 (1984), 703-724. Zbl0579.46025
- [23] A. Ulger, Weak compactness in , Proc. Amer. Math. Soc. 113 (1991), 143-149.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.