Pełczyński's Property (V) on spaces of vector-valued functions

Narcisse Randrianantoanina

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 1, page 63-78
  • ISSN: 0010-1354

How to cite

top

Randrianantoanina, Narcisse. "Pełczyński's Property (V) on spaces of vector-valued functions." Colloquium Mathematicae 71.1 (1996): 63-78. <http://eudml.org/doc/210428>.

@article{Randrianantoanina1996,
author = {Randrianantoanina, Narcisse},
journal = {Colloquium Mathematicae},
keywords = {property (V)},
language = {eng},
number = {1},
pages = {63-78},
title = {Pełczyński's Property (V) on spaces of vector-valued functions},
url = {http://eudml.org/doc/210428},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Randrianantoanina, Narcisse
TI - Pełczyński's Property (V) on spaces of vector-valued functions
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 63
EP - 78
LA - eng
KW - property (V)
UR - http://eudml.org/doc/210428
ER -

References

top
  1. [1] F. Bombal, On l 1 subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), 107-112. Zbl0634.46019
  2. [2] F. Bombal, On ( V * ) sets and Pełczynski’s property ( V * ) , Glasgow Math. J. 32 (1990), 109-120. Zbl0693.46013
  3. [3] J. Bourgain, H is a Grothendieck space, Studia Math. 75 (1983), 193-216. Zbl0533.46035
  4. [4] J. Bourgain, On weak compactness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), 111-118. Zbl0521.46016
  5. [5] P. Cembranos, N. J. Kalton, E. Saab and P. Saab, Pełczyński's property (V) on C(𝜴, E) spaces, Math. Ann. 271 (1985), 91-97. Zbl0546.46029
  6. [6] D. L. Cohn, Measure Theory, Birkhäuser, 1980. 
  7. [7] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294. Zbl0361.46048
  8. [8] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984. 
  9. [9] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. 
  10. [10] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967. 
  11. [11] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1990), 307-318. Zbl0676.46006
  12. [12] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 1969. Zbl0179.46303
  13. [13] S. V. Kisliakov, Uncomplemented uniform algebras, Mat. Zametki 18 (1975), 91-96 (in Russian). 
  14. [14] J. Munkres, Topology. A First Course, Prentice-Hall, Englewood Cliffs, N.J. 1975. 
  15. [15] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648. Zbl0107.32504
  16. [16] H. Pfitzner, Weak compactness in the dual of a C * -algebra is determined commutatively, Math. Ann. 298 (1994), 349-371. Zbl0791.46035
  17. [17] N. Randrianantoanina, Complemented copies of l 1 and Pełczyński’s property ( V * ) in Bochner spaces, Canad. J. Math., to appear. Zbl0858.46029
  18. [18] H. P. Rosenthal, A characterization of Banach spaces containing c 0 , J. Amer. Math. Soc. 7 (1994), 707-747. Zbl0824.46010
  19. [19] W. Ruess, Duality and geometry of spaces of compact operators, in: North-Holland Math. Stud. 90, North-Holland, 1984, 59-78. Zbl0573.46007
  20. [20] E. Saab and P. Saab, Stability problems in Banach spaces, in: Lecture Notes in Pure and Appl. Math. 136, Dekker, 1992, 367-394. Zbl0787.46022
  21. [21] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971. 
  22. [22] M. Talagrand, Weak Cauchy sequences in L 1 ( E ) , Amer. J. Math. 106 (1984), 703-724. Zbl0579.46025
  23. [23] A. Ulger, Weak compactness in L 1 ( μ , X ) , Proc. Amer. Math. Soc. 113 (1991), 143-149. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.