The Nikodym property and local properties of Boolean algebras
Colloquium Mathematicae (1996)
- Volume: 71, Issue: 1, page 79-85
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Aizpuru, Relaciones entre propiedades de supremo y propiedades de interpolación en álgebras de Boole, Collect. Math. 39 (1988), 115-125.
- [2] A. Aizpuru, On the Grothendieck and Nikodym properties of Boolean algebras, Rocky Mountain J. Math. 22 (1992), 1-10. Zbl0755.06008
- [3] F. K. Dashiell, Nonweakly compact operators from order Cauchy complete CS lattices, with application to Baire classes, Trans. Amer. Math. Soc. 266 (1981), 397-413. Zbl0493.47017
- [4] F. J. Freniche, The Vitali-Hahn-Saks theorem for Boolean algebras with the subsequential interpolation property, Proc. Amer. Math. Soc. 92 (1984), 362-366. Zbl0529.28004
- [5] F. J. Freniche, Some classes of Boolean algebras related to the Vitali-Hahn-Saks and Nikodym theorems, communication at the Meeting on Boolean Algebras, Oberwolfach, 1985.
- [6] M. T. Gassó, Algebras with the local interpolation property, Rocky Mountain J. Math. 22 (1992), 181-196.
- [7] R. Haydon, A non-reflexive Grothendieck space that does not contain , Israel J. Math. 40 (1981), 65-73.
- [8] A. Moltó, On the Vitali-Hahn-Saks theorem, Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 163-173. Zbl0482.46016
- [9] W. Schachermayer, On some classical measure theoretic theorems for non--complete Boolean algebras, technical report, Linz University, 1978.
- [10] G. Seever, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280. Zbl0189.44902
- [11] M. Talagrand, Propriété de Nikodym et propriété de Grothendieck, Studia Math. 68 (1984), 165-171. Zbl0563.28003