Quasi-commutative polynomial algebras and the power property of 2 × 2 quantum matrices

Piotr Jędrzejewicz

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 2, page 217-224
  • ISSN: 0010-1354

How to cite

top

Jędrzejewicz, Piotr. "Quasi-commutative polynomial algebras and the power property of 2 × 2 quantum matrices." Colloquium Mathematicae 71.2 (1996): 217-224. <http://eudml.org/doc/210436>.

@article{Jędrzejewicz1996,
author = {Jędrzejewicz, Piotr},
journal = {Colloquium Mathematicae},
keywords = {quasi-commutative relation; quadratic algebras; quantum matrices},
language = {eng},
number = {2},
pages = {217-224},
title = {Quasi-commutative polynomial algebras and the power property of 2 × 2 quantum matrices},
url = {http://eudml.org/doc/210436},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Jędrzejewicz, Piotr
TI - Quasi-commutative polynomial algebras and the power property of 2 × 2 quantum matrices
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 2
SP - 217
EP - 224
LA - eng
KW - quasi-commutative relation; quadratic algebras; quantum matrices
UR - http://eudml.org/doc/210436
ER -

References

top
  1. [1] E. Corrigan, D. B. Fairlie, P. Fletcher and R. Sasaki, Some aspects of quantum groups and supergroups, J. Math. Phys. 31 (1990), 776-780. Zbl0713.17011
  2. [2] H. Ewen, O. Ogievetsky and J. Wess, Quantum matrices in two dimensions, Lett. Math. Phys. 22 (1991), 297-305. Zbl0754.17012
  3. [3] B. A. Kupershmidt, The quantum group G L h ( 2 ) , J. Phys. A 25 (1992), L1239-L1244. 
  4. [4] Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Université de Montréal, 1988. 
  5. [5] Yu. I. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991. Zbl0724.17007
  6. [6] E. E. Mukhin, Quantum de Rham complexes, Comm. Algebra 22 (1994), 451-498. 
  7. [7] O. Ogievetsky and J. Wess, Relations between G L p , q ( 2 ) ’s, Z. Phys. C 50 (1991), 123-131. Zbl0754.17014
  8. [8] A. Sudbery, Consistent multiparameter quantisation of GL(n), J. Phys. A 23 (1990), L697-L704. 
  9. [9] T. Umeda and M. Wakayama, Powers of 2 × 2 quantum matrices, Comm. Algebra 21 (1993), 4461-4465. Zbl0791.15008
  10. [10] S. Vokos, J. Wess and B. Zumino, Analysis of the basic matrix representation of G L q ( 2 , C ) , Z. Phys. C 48 (1990), 65-74. Zbl0754.17015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.