Very small sets
Haim Judah; Amiran Lior; Ireneusz Recław
Colloquium Mathematicae (1997)
- Volume: 72, Issue: 2, page 207-213
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Univ. Carolin. 34 (1993), 7-9.
- [CP] J. Cichoń and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic 51 (1986), 560-569. Zbl0622.03035
- [FJ] D. H. Fremlin and J. Jasiński, -covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538. Zbl0591.54028
- [GM] F. Galvin and A. W. Miller, γ-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155.
- [K] A. Kechris, Lectures on Classical Descriptive Set Theory, Springer, Berlin, 1995. Zbl0819.04002
- [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, 201-233.
- [P] J. Pawlikowski, Every Sierpiński set is strongly meagre, preprint. Zbl0871.04003
- [PR] J. Pawlikowski and I. Recław, Parametrized Cichoń's diagram and small sets, Fund. Math. 147 (1995), 135-155. Zbl0847.04004
- [R] I. Recław, Every Lusin set is undetermined in the point-open game, ibid. 144 (1995), 43-54. Zbl0809.04002
- [R1] I. Recław, On small sets in the sense of measure and category, ibid. 133 (1989), 255-260. Zbl0707.28001