# Rough singular integral operators with Hardy space function kernels on a product domain

Colloquium Mathematicae (1997)

- Volume: 73, Issue: 1, page 15-23
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topDing, Yong. "Rough singular integral operators with Hardy space function kernels on a product domain." Colloquium Mathematicae 73.1 (1997): 15-23. <http://eudml.org/doc/210475>.

@article{Ding1997,

abstract = {In this paper we introduce atomic Hardy spaces on the product domain $S^\{n-1\}×S^\{m-1\}$ and prove that rough singular integral operators with Hardy space function kernels are $L^p$ bounded on $ℝ^\{n\} × ℝ^\{m\}$. This is an extension of some well known results.},

author = {Ding, Yong},

journal = {Colloquium Mathematicae},

keywords = {rough kernels; -boundedness; singular integral operators on product domains},

language = {eng},

number = {1},

pages = {15-23},

title = {Rough singular integral operators with Hardy space function kernels on a product domain},

url = {http://eudml.org/doc/210475},

volume = {73},

year = {1997},

}

TY - JOUR

AU - Ding, Yong

TI - Rough singular integral operators with Hardy space function kernels on a product domain

JO - Colloquium Mathematicae

PY - 1997

VL - 73

IS - 1

SP - 15

EP - 23

AB - In this paper we introduce atomic Hardy spaces on the product domain $S^{n-1}×S^{m-1}$ and prove that rough singular integral operators with Hardy space function kernels are $L^p$ bounded on $ℝ^{n} × ℝ^{m}$. This is an extension of some well known results.

LA - eng

KW - rough kernels; -boundedness; singular integral operators on product domains

UR - http://eudml.org/doc/210475

ER -

## References

top- [1] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (4) (1986), 185-206. Zbl0568.42011
- [2] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. Zbl0568.42012
- [3] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. 4 (1981), 195-201. Zbl0466.42007
- [4] Y. S. Jiang and S. Z. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J. 24 (1995), 1-7.
- [5] D. K. Watson, The Hardy space kernel condition for rough integrals, preprint.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.