A modulus for property (β) of Rolewicz

J. Ayerbe; T. Domínguez Benavides; S. Cutillas

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 2, page 183-191
  • ISSN: 0010-1354

Abstract

top
We define a modulus for the property (β) of Rolewicz and study some useful properties in fixed point theory for nonexpansive mappings. Moreover, we calculate this modulus in l p spaces for the main measures of noncompactness.

How to cite

top

Ayerbe, J., Domínguez Benavides, T., and Cutillas, S.. "A modulus for property (β) of Rolewicz." Colloquium Mathematicae 73.2 (1997): 183-191. <http://eudml.org/doc/210484>.

@article{Ayerbe1997,
abstract = {We define a modulus for the property (β) of Rolewicz and study some useful properties in fixed point theory for nonexpansive mappings. Moreover, we calculate this modulus in $l^p$ spaces for the main measures of noncompactness.},
author = {Ayerbe, J., Domínguez Benavides, T., Cutillas, S.},
journal = {Colloquium Mathematicae},
keywords = {property (β); measures of noncompactness; normal structure; $l^p$-spaces; uniform convexity; modulus; property of Rolewicz; fixed point theory; nonexpansive mappings; spaces},
language = {eng},
number = {2},
pages = {183-191},
title = {A modulus for property (β) of Rolewicz},
url = {http://eudml.org/doc/210484},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Ayerbe, J.
AU - Domínguez Benavides, T.
AU - Cutillas, S.
TI - A modulus for property (β) of Rolewicz
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 183
EP - 191
AB - We define a modulus for the property (β) of Rolewicz and study some useful properties in fixed point theory for nonexpansive mappings. Moreover, we calculate this modulus in $l^p$ spaces for the main measures of noncompactness.
LA - eng
KW - property (β); measures of noncompactness; normal structure; $l^p$-spaces; uniform convexity; modulus; property of Rolewicz; fixed point theory; nonexpansive mappings; spaces
UR - http://eudml.org/doc/210484
ER -

References

top
  1. [AKPRS] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser, 1992. 
  2. [ADF] J. M. Ayerbe, T. Domínguez Benavides and S. Francisco Cutillas, Some noncompact convexity moduli for the property (β) of Rolewicz, Comm. Appl. Nonlinear Anal. 1 (1994), 87-98. Zbl0861.46006
  3. [B1] J. Banaś, On modulus of noncompact convexity and its properties, Canad. Math. Bull. 30 (1987), 186-192. Zbl0585.46011
  4. [B2] J. Banaś, Compactness conditions in the geometric theory of Banach spaces, Nonlinear Anal. 16 (1991), 669-682. Zbl0724.46019
  5. [B] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland, 1986. Zbl0491.46014
  6. [By] W. L. Bynum, A class of spaces lacking normal structure, Compositio Math. 25 (1972), 233-236. Zbl0244.46012
  7. [DL] T. Domínguez Benavides and G. López Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 245-252. Zbl0787.46010
  8. [GK] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. Zbl0708.47031
  9. [GS] K. Goebel and T. Sękowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska Sect. A 38 (1984), 41-48 . Zbl0607.46011
  10. [GGM] I. C. Gohberg, L. S. Goldenstein and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uchen. Zap. Kishinev. Un-ta 29 (1975), 29-36 (in Russian). 
  11. [H] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 4 (1980), 743-749. Zbl0505.46011
  12. [K] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. Zbl56.1124.04
  13. [Ku] D. N. Kutzarova, k-(β) and k-nearly uniform convex Banach spaces, J. Math. Anal. Appl. 162 (1991), 322-338. 
  14. [KMP] D. N. Kutzarova, E. Maluta and S. Prus, Property (β) implies normal structure of the dual space, Rend. Circ. Mat. Palermo 41 (1992), 353-368. Zbl0785.46013
  15. [KP] D. N. Kutzarova and P. L. Papini, On a characterization of property (β) and LUR, Boll. Un. Mat. Ital. A (7) 6 (1992), 209-214. Zbl0786.46019
  16. [M] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley Interscience, New York, 1976. 
  17. [O] Z. Opial, Lecture Notes on Nonexpansive and Monotone Mappings in Banach Spaces, Center for Dynamical Systems, Brown University, 1967. 
  18. [R1] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35. 
  19. [R2] S. Rolewicz, On Δ-uniform convexity and drop property, ibid. 87 (1987), 181-191. 
  20. [S] B. N. Sadovskiĭ, On a fixed point principle, Funktsional. Anal. i Prilozhen. 4 (2) (1967), 74-76 (in Russian). Zbl0165.49102
  21. [WW] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.