A modulus for property (β) of Rolewicz
J. Ayerbe; T. Domínguez Benavides; S. Cutillas
Colloquium Mathematicae (1997)
- Volume: 73, Issue: 2, page 183-191
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topAyerbe, J., Domínguez Benavides, T., and Cutillas, S.. "A modulus for property (β) of Rolewicz." Colloquium Mathematicae 73.2 (1997): 183-191. <http://eudml.org/doc/210484>.
@article{Ayerbe1997,
abstract = {We define a modulus for the property (β) of Rolewicz and study some useful properties in fixed point theory for nonexpansive mappings. Moreover, we calculate this modulus in $l^p$ spaces for the main measures of noncompactness.},
author = {Ayerbe, J., Domínguez Benavides, T., Cutillas, S.},
journal = {Colloquium Mathematicae},
keywords = {property (β); measures of noncompactness; normal structure; $l^p$-spaces; uniform convexity; modulus; property of Rolewicz; fixed point theory; nonexpansive mappings; spaces},
language = {eng},
number = {2},
pages = {183-191},
title = {A modulus for property (β) of Rolewicz},
url = {http://eudml.org/doc/210484},
volume = {73},
year = {1997},
}
TY - JOUR
AU - Ayerbe, J.
AU - Domínguez Benavides, T.
AU - Cutillas, S.
TI - A modulus for property (β) of Rolewicz
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 183
EP - 191
AB - We define a modulus for the property (β) of Rolewicz and study some useful properties in fixed point theory for nonexpansive mappings. Moreover, we calculate this modulus in $l^p$ spaces for the main measures of noncompactness.
LA - eng
KW - property (β); measures of noncompactness; normal structure; $l^p$-spaces; uniform convexity; modulus; property of Rolewicz; fixed point theory; nonexpansive mappings; spaces
UR - http://eudml.org/doc/210484
ER -
References
top- [AKPRS] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser, 1992.
- [ADF] J. M. Ayerbe, T. Domínguez Benavides and S. Francisco Cutillas, Some noncompact convexity moduli for the property (β) of Rolewicz, Comm. Appl. Nonlinear Anal. 1 (1994), 87-98. Zbl0861.46006
- [B1] J. Banaś, On modulus of noncompact convexity and its properties, Canad. Math. Bull. 30 (1987), 186-192. Zbl0585.46011
- [B2] J. Banaś, Compactness conditions in the geometric theory of Banach spaces, Nonlinear Anal. 16 (1991), 669-682. Zbl0724.46019
- [B] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland, 1986. Zbl0491.46014
- [By] W. L. Bynum, A class of spaces lacking normal structure, Compositio Math. 25 (1972), 233-236. Zbl0244.46012
- [DL] T. Domínguez Benavides and G. López Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 245-252. Zbl0787.46010
- [GK] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. Zbl0708.47031
- [GS] K. Goebel and T. Sękowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska Sect. A 38 (1984), 41-48 . Zbl0607.46011
- [GGM] I. C. Gohberg, L. S. Goldenstein and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uchen. Zap. Kishinev. Un-ta 29 (1975), 29-36 (in Russian).
- [H] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 4 (1980), 743-749. Zbl0505.46011
- [K] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. Zbl56.1124.04
- [Ku] D. N. Kutzarova, k-(β) and k-nearly uniform convex Banach spaces, J. Math. Anal. Appl. 162 (1991), 322-338.
- [KMP] D. N. Kutzarova, E. Maluta and S. Prus, Property (β) implies normal structure of the dual space, Rend. Circ. Mat. Palermo 41 (1992), 353-368. Zbl0785.46013
- [KP] D. N. Kutzarova and P. L. Papini, On a characterization of property (β) and LUR, Boll. Un. Mat. Ital. A (7) 6 (1992), 209-214. Zbl0786.46019
- [M] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley Interscience, New York, 1976.
- [O] Z. Opial, Lecture Notes on Nonexpansive and Monotone Mappings in Banach Spaces, Center for Dynamical Systems, Brown University, 1967.
- [R1] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35.
- [R2] S. Rolewicz, On Δ-uniform convexity and drop property, ibid. 87 (1987), 181-191.
- [S] B. N. Sadovskiĭ, On a fixed point principle, Funktsional. Anal. i Prilozhen. 4 (2) (1967), 74-76 (in Russian). Zbl0165.49102
- [WW] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.