The uniqueness of Haar measure and set theory
Colloquium Mathematicae (1997)
- Volume: 74, Issue: 1, page 109-121
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987). Zbl0703.28003
- [2] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk (ed.), Elsevier, 1989, 877-980.
- [3] D. H. Fremlin, Real-valued-measurable cardinals, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1993, 151-304.
- [4] P. R. Halmos, Measure Theory, Springer, New York, 1974.
- [5] A. B. Harazišvili, Groups of motions and the uniqueness of the Lebesgue measure, Soobshch. Akad. Nauk Gruzin. SSR 130 (1988), 29-32 (in Russian).
- [6] L. Nachbin, The Haar Integral, D. Van Nostrand, Princeton, N.J., 1965.
- [7] J. von Neumann, On rings of operators. III, Ann. of Math. 41 (1940), 94-161. Zbl0023.13303
- [8] K. R. Parthasarathy, Introduction to Probability and Measure, Macmillan India Press, Madras, 1977. Zbl0395.28001
- [9] M. Penconek and P. Zakrzewski, The existence of non-measurable sets for invariant measures, Proc. Amer. Math. Soc. 121 (1994), 579-584. Zbl0822.03027
- [10] I. E. Segal and R. A. Kunze, Integrals and Operators, Springer, Berlin, 1978. Zbl0373.28001
- [11] P. Zakrzewski, The existence of universal invariant measures on large sets, Fund. Math. 133 (1989), 113-124. Zbl0715.28010
- [12] P. Zakrzewski, Paradoxical decompositions and invariant measures, Proc. Amer. Math. Soc. 111 (1991), 533-539. Zbl0716.04002
- [13] P. Zakrzewski, The existence of invariant probability measures for a group of transformations, Israel J. Math. 83 (1993), 343-352. Zbl0786.28012
- [14] P. Zakrzewski, Strong Fubini axioms from measure extension axioms, Comment. Math. Univ. Carolin. 33 (1992), 291-297. Zbl0765.03026
- [15] P. Zakrzewski, When do sets admit congruent partitions?, Quart. J. Math. Oxford (2) 45 (1994), 255-265. Zbl0885.28003