Constructing the directing components of an algebra

J. de la Peña; M. Takane

Colloquium Mathematicae (1997)

  • Volume: 74, Issue: 1, page 29-46
  • ISSN: 0010-1354

How to cite

top

de la Peña, J., and Takane, M.. "Constructing the directing components of an algebra." Colloquium Mathematicae 74.1 (1997): 29-46. <http://eudml.org/doc/210500>.

@article{delaPeña1997,
author = {de la Peña, J., Takane, M.},
journal = {Colloquium Mathematicae},
keywords = {directing components; one-point extensions; finite dimensional algebras; Auslander-Reiten quivers; connected components; indecomposable modules; convex subcategories},
language = {eng},
number = {1},
pages = {29-46},
title = {Constructing the directing components of an algebra},
url = {http://eudml.org/doc/210500},
volume = {74},
year = {1997},
}

TY - JOUR
AU - de la Peña, J.
AU - Takane, M.
TI - Constructing the directing components of an algebra
JO - Colloquium Mathematicae
PY - 1997
VL - 74
IS - 1
SP - 29
EP - 46
LA - eng
KW - directing components; one-point extensions; finite dimensional algebras; Auslander-Reiten quivers; connected components; indecomposable modules; convex subcategories
UR - http://eudml.org/doc/210500
ER -

References

top
  1. [1] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. 
  2. [2] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (2) (1983), 212-220. Zbl0511.16022
  3. [3] F. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, to appear. Zbl0880.16006
  4. [4] P. Dräxler and J. A. de la Pe na, On the existence of postprojective components for algebras, Tsukuba J. Math. 20 (1996), 457-469. Zbl0902.16017
  5. [5] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I (Proc. ICRA II, Ottawa, 1979), Lecture Notes in Math. 831, Springer, 1980, 1-71. 
  6. [6] P. Gabriel and J. A. de la Pe na, On algebras: wild and tame, in: Duration and Change. Fifty Years at Oberwolfach, Springer, 1994, 177-210. 
  7. [7] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343. 
  8. [8] D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), 237-246. Zbl0795.16007
  9. [9] S. Kasjan and J. A. de la Pe na, Constructing the preprojective components of an algebra, J. Algebra 179 (1996), 793-807. Zbl0848.16010
  10. [10] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  11. [11] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. (Basel) 61 (1993), 12-19. Zbl0809.16015
  12. [12] J. A. de la Pe na and M. Takane, Spectral properties of Coxeter transformations and applications, ibid. 55 (1990), 120-134. Zbl0687.16017
  13. [13] C. M. Ringel, Tame algebras, in: Representation Theory I (Proc. ICRA II, Ottawa, 1979), Lecture Notes in Math. 831, Springer, 1980, 137-287. 
  14. [14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984. 
  15. [15] C. M. Ringel, The spectral radius of the Coxeter transformation for a generalized Cartan matrix, Math. Ann. 300 (1994), 331-339. 
  16. [16] A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 424, Kluwer, 1994, 309-345. Zbl0819.16013
  17. [17] A. Skowroński, Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math. 30 (1993), 515-527. Zbl0818.16017
  18. [18] A. Skowroński and S. Smalο, Directing modules, J. Algebra 147 (1992), 137-146. Zbl0746.16008
  19. [19] A. Skowroński and M. Wenderlich, Artin algebras with directing indecomposable projective modules, ibid. 165 (1994), 507-530. Zbl0841.16014
  20. [20] H. Strauß, On the perpendicular category of a partial tilting module, ibid. 144 (1991), 43-66. Zbl0746.16009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.