Definability of principal congruences in equivalential algebras

PaweŁ Idziak; Andrzej Wroński

Colloquium Mathematicae (1998)

  • Volume: 74, Issue: 2, page 225-238
  • ISSN: 0010-1354

How to cite

top

Idziak, PaweŁ, and Wroński, Andrzej. "Definability of principal congruences in equivalential algebras." Colloquium Mathematicae 74.2 (1998): 225-238. <http://eudml.org/doc/210512>.

@article{Idziak1998,
author = {Idziak, PaweŁ, Wroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {Mal'tsev conditions; congruence permutable variety; principal congruences; equivalential algebras; Boolean groups; Brouwerian semilattices; equivalential reducts},
language = {eng},
number = {2},
pages = {225-238},
title = {Definability of principal congruences in equivalential algebras},
url = {http://eudml.org/doc/210512},
volume = {74},
year = {1998},
}

TY - JOUR
AU - Idziak, PaweŁ
AU - Wroński, Andrzej
TI - Definability of principal congruences in equivalential algebras
JO - Colloquium Mathematicae
PY - 1998
VL - 74
IS - 2
SP - 225
EP - 238
LA - eng
KW - Mal'tsev conditions; congruence permutable variety; principal congruences; equivalential algebras; Boolean groups; Brouwerian semilattices; equivalential reducts
UR - http://eudml.org/doc/210512
ER -

References

top
  1. [1] K. A. Baker, Definable normal closures in locally finite varieties of groups, Houston J. Math. 7 (1981), 467-471. Zbl0494.20012
  2. [2] J. T. Baldwin and J. Berman, The number of subdirectly irreducible algebras in a variety, Algebra Universalis 5 (1975), 379-389. Zbl0348.08002
  3. [3] J. Berman, A proof of Lyndon's finite basis theorem, Discrete Math. 29 (1980), 229-233. Zbl0449.08004
  4. [4] W. Blok, P. Köhler and D. Pigozzi, On the structure of varieties with equationally definable principal congruences II, Algebra Universalis 18 (1984), 334-379. 
  5. [5] S. Burris, An example concerning definable principal congruences, ibid. 7 (1977), 403-404. Zbl0364.08005
  6. [6] S. Burris and J. Lawrence, Definable principal congruences in varieties of rings and groups, ibid. 9 (1979), 152-164. Zbl0407.08006
  7. [7] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973. 
  8. [8] A. Eastman and W. Nemitz, Density and closure in implicative semilattices, Algebra Universalis 5 (1975), 1-5. 
  9. [9] H. P. Gumm and A. Ursini, Ideals in universal algebras, ibid. 19 (1984), 45-54. Zbl0547.08001
  10. [10] J. Hagemmann, On regular and weakly regular congruences, preprint 75, TH Darmstadt, 1973. 
  11. [11] P. M. Idziak, Varieties with decidable finite algebras I: Linearity, Algebra Universalis 26 (1989), 234-246. Zbl0679.08002
  12. [12] J. K. Kabziński and A. Wroński, On equivalential algebras, in: Proc. 1975 Internat. Sympos. on Multiple-Valued Logic (Indiana University, Bloomington, Ind., 1975), IEEE Comput. Soc., Long Beach, Calif., 1975, 419-428. 
  13. [13] E. Kiss, Definable principal congruences in congruence distributive varieties, Algebra Universalis 21 (1985), 213-224. Zbl0554.08006
  14. [14] P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, ibid. 11 (1980), 213-219. Zbl0448.08005
  15. [15] R. McKenzie, Paraprimal varieties: A study of finite axiomatizability and definable principal congruences, ibid. 8 (1978), 336-348. Zbl0383.08008
  16. [16] A. F. Pixley, Principal congruence formulas in arithmetical varieties, in: Lecture Notes in Math. 1149, Springer, 1985, 238-254. Zbl0572.08003
  17. [17] G. E. Simons, Varieties of rings with definable principal congruences, Proc. Amer. Math. Soc. 87 (1983), 367-402. Zbl0512.16017
  18. [18] A. Wroński, On the free equivalential algebra with three generators, Bull. Sec. Logic Polish Acad. Sci. 22 (1993), 37-39. Zbl0793.03078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.