Tubular mutations

Hagen Meltzer

Colloquium Mathematicae (1998)

  • Volume: 74, Issue: 2, page 267-274
  • ISSN: 0010-1354

How to cite

top

Meltzer, Hagen. "Tubular mutations." Colloquium Mathematicae 74.2 (1998): 267-274. <http://eudml.org/doc/210517>.

@article{Meltzer1998,
author = {Meltzer, Hagen},
journal = {Colloquium Mathematicae},
keywords = {weighted projective lines of genus one; tubular mutations; exceptional indecomposable vector bundles; distinguished triangles; elliptic curves; categories of graded coherent sheaves; derived categories; natural transformations},
language = {eng},
number = {2},
pages = {267-274},
title = {Tubular mutations},
url = {http://eudml.org/doc/210517},
volume = {74},
year = {1998},
}

TY - JOUR
AU - Meltzer, Hagen
TI - Tubular mutations
JO - Colloquium Mathematicae
PY - 1998
VL - 74
IS - 2
SP - 267
EP - 274
LA - eng
KW - weighted projective lines of genus one; tubular mutations; exceptional indecomposable vector bundles; distinguished triangles; elliptic curves; categories of graded coherent sheaves; derived categories; natural transformations
UR - http://eudml.org/doc/210517
ER -

References

top
  1. [1] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452. Zbl0084.17305
  2. [2] A. A. Beilinson, Coherent sheaves on n and problems of linear algebra, Functional Anal. Appl. 12 (2) (1979), 214-216. Zbl0424.14003
  3. [3] A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 25-44 (in Russian); English transl.: Math. USSR-Izv. 34 (1990), 23-42. 
  4. [4] J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur 2 ( ) , Math. Ann. 275 (1986), 25-48. 
  5. [5] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297. Zbl0651.14006
  6. [6] A. L. Gorodentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), 115-130. Zbl0646.14014
  7. [7] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. Zbl0635.16017
  8. [8] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Representation Theory I, Finite Dimensional Algebras, Lecture Notes in Math. 1177, Springer, 1986, 156-180. 
  9. [9] S. A. Kuleshov, Construction of bundles on an elliptic curve, in: Helices and Vector Bundles, London Math. Soc. Lecture Note Ser. 148, Cambridge Univ. Press, 1990, 7-22. 
  10. [10] H. Lenzing, Representations of finite-dimensional algebras and singularity theory, preprint, 1996. 
  11. [11] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations over a tubular algebra, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. Zbl0809.16012
  12. [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  13. [13] A. N. Rudakov, The Markov numbers and exceptional bundles on ℙ^2, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 100-112 (in Russian); English transl.: Math. USSR-Izv. 32 (1989), 99-112. 
  14. [14] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96 (1982). Zbl0517.14008

NotesEmbed ?

top

You must be logged in to post comments.