Tubular mutations

Hagen Meltzer

Colloquium Mathematicae (1998)

  • Volume: 74, Issue: 2, page 267-274
  • ISSN: 0010-1354

How to cite

top

Meltzer, Hagen. "Tubular mutations." Colloquium Mathematicae 74.2 (1998): 267-274. <http://eudml.org/doc/210517>.

@article{Meltzer1998,
author = {Meltzer, Hagen},
journal = {Colloquium Mathematicae},
keywords = {weighted projective lines of genus one; tubular mutations; exceptional indecomposable vector bundles; distinguished triangles; elliptic curves; categories of graded coherent sheaves; derived categories; natural transformations},
language = {eng},
number = {2},
pages = {267-274},
title = {Tubular mutations},
url = {http://eudml.org/doc/210517},
volume = {74},
year = {1998},
}

TY - JOUR
AU - Meltzer, Hagen
TI - Tubular mutations
JO - Colloquium Mathematicae
PY - 1998
VL - 74
IS - 2
SP - 267
EP - 274
LA - eng
KW - weighted projective lines of genus one; tubular mutations; exceptional indecomposable vector bundles; distinguished triangles; elliptic curves; categories of graded coherent sheaves; derived categories; natural transformations
UR - http://eudml.org/doc/210517
ER -

References

top
  1. [1] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452. Zbl0084.17305
  2. [2] A. A. Beilinson, Coherent sheaves on n and problems of linear algebra, Functional Anal. Appl. 12 (2) (1979), 214-216. Zbl0424.14003
  3. [3] A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 25-44 (in Russian); English transl.: Math. USSR-Izv. 34 (1990), 23-42. 
  4. [4] J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur 2 ( ) , Math. Ann. 275 (1986), 25-48. 
  5. [5] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297. Zbl0651.14006
  6. [6] A. L. Gorodentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), 115-130. Zbl0646.14014
  7. [7] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. Zbl0635.16017
  8. [8] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Representation Theory I, Finite Dimensional Algebras, Lecture Notes in Math. 1177, Springer, 1986, 156-180. 
  9. [9] S. A. Kuleshov, Construction of bundles on an elliptic curve, in: Helices and Vector Bundles, London Math. Soc. Lecture Note Ser. 148, Cambridge Univ. Press, 1990, 7-22. 
  10. [10] H. Lenzing, Representations of finite-dimensional algebras and singularity theory, preprint, 1996. 
  11. [11] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations over a tubular algebra, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. Zbl0809.16012
  12. [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  13. [13] A. N. Rudakov, The Markov numbers and exceptional bundles on ℙ^2, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 100-112 (in Russian); English transl.: Math. USSR-Izv. 32 (1989), 99-112. 
  14. [14] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96 (1982). Zbl0517.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.