# Local spectrum and Kaplansky's theorem on algebraic operators

Colloquium Mathematicae (1998)

- Volume: 75, Issue: 2, page 159-165
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topDrissi, Driss. "Local spectrum and Kaplansky's theorem on algebraic operators." Colloquium Mathematicae 75.2 (1998): 159-165. <http://eudml.org/doc/210534>.

@article{Drissi1998,

abstract = {Using elementary arguments we improve former results of P. Vrbová concerning local spectrum. As a consequence, we obtain a new proof of Kaplansky’s theorem on algebraic operators on a Banach space.},

author = {Drissi, Driss},

journal = {Colloquium Mathematicae},

keywords = {local spectral radius; local spectrum; algebraic operators; Kaplansky's theorem},

language = {eng},

number = {2},

pages = {159-165},

title = {Local spectrum and Kaplansky's theorem on algebraic operators},

url = {http://eudml.org/doc/210534},

volume = {75},

year = {1998},

}

TY - JOUR

AU - Drissi, Driss

TI - Local spectrum and Kaplansky's theorem on algebraic operators

JO - Colloquium Mathematicae

PY - 1998

VL - 75

IS - 2

SP - 159

EP - 165

AB - Using elementary arguments we improve former results of P. Vrbová concerning local spectrum. As a consequence, we obtain a new proof of Kaplansky’s theorem on algebraic operators on a Banach space.

LA - eng

KW - local spectral radius; local spectrum; algebraic operators; Kaplansky's theorem

UR - http://eudml.org/doc/210534

ER -

## References

top- [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
- [2] B. Aupetit and D. Drissi, Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. Zbl0861.47003
- [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
- [4] N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. Zbl0088.32102
- [5] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977. Zbl0381.47001
- [6] C. Foiaş and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473-486. Zbl0175.13604
- [7] J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324. Zbl0172.17204
- [8] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
- [9] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1969.
- [10] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. Zbl0268.47006

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.