Local spectrum and Kaplansky's theorem on algebraic operators
Colloquium Mathematicae (1998)
- Volume: 75, Issue: 2, page 159-165
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
- [2] B. Aupetit and D. Drissi, Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. Zbl0861.47003
- [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
- [4] N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. Zbl0088.32102
- [5] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977. Zbl0381.47001
- [6] C. Foiaş and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473-486. Zbl0175.13604
- [7] J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324. Zbl0172.17204
- [8] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
- [9] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1969.
- [10] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. Zbl0268.47006