Some stability results for asymptotic norming properties of Banach spaces

Sudeshna Basu; T. Rao

Colloquium Mathematicae (1998)

  • Volume: 75, Issue: 2, page 271-284
  • ISSN: 0010-1354

How to cite

top

Basu, Sudeshna, and Rao, T.. "Some stability results for asymptotic norming properties of Banach spaces." Colloquium Mathematicae 75.2 (1998): 271-284. <http://eudml.org/doc/210542>.

@article{Basu1998,
author = {Basu, Sudeshna, Rao, T.},
journal = {Colloquium Mathematicae},
keywords = {$c_0$- and $l_1$-direct sum of Banach spaces; $w^*$-Asymptotic Norming Property; Hahn-Banach smoothness; asymptotic norming properties},
language = {eng},
number = {2},
pages = {271-284},
title = {Some stability results for asymptotic norming properties of Banach spaces},
url = {http://eudml.org/doc/210542},
volume = {75},
year = {1998},
}

TY - JOUR
AU - Basu, Sudeshna
AU - Rao, T.
TI - Some stability results for asymptotic norming properties of Banach spaces
JO - Colloquium Mathematicae
PY - 1998
VL - 75
IS - 2
SP - 271
EP - 284
LA - eng
KW - $c_0$- and $l_1$-direct sum of Banach spaces; $w^*$-Asymptotic Norming Property; Hahn-Banach smoothness; asymptotic norming properties
UR - http://eudml.org/doc/210542
ER -

References

top
  1. [1] P. Bandyopadhyay and S. Basu, On a new asymptotic norming property, ISI Tech. Report No. 5/95, 1995. 
  2. [2] P. Bandyopadhyay and A. K. Roy, Some stability results for Banach spaces with the Mazur Intersection Property, Indag. Math. 1 (1990), 137-154. Zbl0728.46020
  3. [3] D. Chen and B. L. Lin, Ball separation properties in Banach spaces, preprint, 1995. 
  4. [4] D J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984. 
  5. [5] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977. 
  6. [6] G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220. Zbl0453.46018
  7. [7] G. Godefroy, Applications à la dualité d'une propriété d'intersection de boules, Math. Z. 182 (1983), 233-236. Zbl0488.46014
  8. [8] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993. Zbl0789.46011
  9. [9] Z. Hu and B. L. Lin, On the asymptotic norming properties of Banach spaces, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 136, Marcel Dekker, 1992, 195-210. Zbl0834.46007
  10. [10] Z. Hu and B. L. Lin, Smoothness and asymptotic norming properties in Banach spaces, Bull. Austral. Math. Soc. 45 (1992), 285-296. Zbl0808.46024
  11. [11] Z. Hu and B. L. Lin, RNP and CPCP in Lebesgue Bochner function spaces, Illinois J. Math. 37 (1993), 329-347. Zbl0839.46010
  12. [12] Z. Hu and M. A. Smith, On the extremal structure of the unit ball of the space C ( K , X ) * , in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, 1995, 205-223. 
  13. [13] K N. J. Kalton, Spaces of compact operators, Math. Ann. 108 (1974), 267-278. Zbl0266.47038
  14. [14] L Å. Lima, Uniqueness of Hahn-Banach extensions and lifting of linear dependences, Math. Scand. 53 (1983), 97-113. Zbl0532.46003
  15. [15] Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), 473-490. Zbl0823.46023
  16. [16] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. Zbl0332.46013
  17. [17] E. Oja and M. P oldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306. Zbl0854.46014
  18. [18] P R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. Zbl0096.31102
  19. [19] R T. S. S. R. K. Rao, Spaces with the Namioka-Phelps property have trivial L -structure, Arch. Math. (Basel) 62 (1994), 65-68. Zbl0818.46021
  20. [20] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57. Zbl0648.46004
  21. [21] S F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331. Zbl0363.46024
  22. [22] Y D. Yost, Approximation by compact operators between C ( X ) spaces, J. Approx. Theory 49 (1987), 99-109. Zbl0621.41025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.