Some stability results for asymptotic norming properties of Banach spaces
Colloquium Mathematicae (1998)
- Volume: 75, Issue: 2, page 271-284
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBasu, Sudeshna, and Rao, T.. "Some stability results for asymptotic norming properties of Banach spaces." Colloquium Mathematicae 75.2 (1998): 271-284. <http://eudml.org/doc/210542>.
@article{Basu1998,
author = {Basu, Sudeshna, Rao, T.},
journal = {Colloquium Mathematicae},
keywords = {$c_0$- and $l_1$-direct sum of Banach spaces; $w^*$-Asymptotic Norming Property; Hahn-Banach smoothness; asymptotic norming properties},
language = {eng},
number = {2},
pages = {271-284},
title = {Some stability results for asymptotic norming properties of Banach spaces},
url = {http://eudml.org/doc/210542},
volume = {75},
year = {1998},
}
TY - JOUR
AU - Basu, Sudeshna
AU - Rao, T.
TI - Some stability results for asymptotic norming properties of Banach spaces
JO - Colloquium Mathematicae
PY - 1998
VL - 75
IS - 2
SP - 271
EP - 284
LA - eng
KW - $c_0$- and $l_1$-direct sum of Banach spaces; $w^*$-Asymptotic Norming Property; Hahn-Banach smoothness; asymptotic norming properties
UR - http://eudml.org/doc/210542
ER -
References
top- [1] P. Bandyopadhyay and S. Basu, On a new asymptotic norming property, ISI Tech. Report No. 5/95, 1995.
- [2] P. Bandyopadhyay and A. K. Roy, Some stability results for Banach spaces with the Mazur Intersection Property, Indag. Math. 1 (1990), 137-154. Zbl0728.46020
- [3] D. Chen and B. L. Lin, Ball separation properties in Banach spaces, preprint, 1995.
- [4] D J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
- [5] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [6] G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220. Zbl0453.46018
- [7] G. Godefroy, Applications à la dualité d'une propriété d'intersection de boules, Math. Z. 182 (1983), 233-236. Zbl0488.46014
- [8] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993. Zbl0789.46011
- [9] Z. Hu and B. L. Lin, On the asymptotic norming properties of Banach spaces, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 136, Marcel Dekker, 1992, 195-210. Zbl0834.46007
- [10] Z. Hu and B. L. Lin, Smoothness and asymptotic norming properties in Banach spaces, Bull. Austral. Math. Soc. 45 (1992), 285-296. Zbl0808.46024
- [11] Z. Hu and B. L. Lin, RNP and CPCP in Lebesgue Bochner function spaces, Illinois J. Math. 37 (1993), 329-347. Zbl0839.46010
- [12] Z. Hu and M. A. Smith, On the extremal structure of the unit ball of the space , in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, 1995, 205-223.
- [13] K N. J. Kalton, Spaces of compact operators, Math. Ann. 108 (1974), 267-278. Zbl0266.47038
- [14] L Å. Lima, Uniqueness of Hahn-Banach extensions and lifting of linear dependences, Math. Scand. 53 (1983), 97-113. Zbl0532.46003
- [15] Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), 473-490. Zbl0823.46023
- [16] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. Zbl0332.46013
- [17] E. Oja and M. P oldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306. Zbl0854.46014
- [18] P R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. Zbl0096.31102
- [19] R T. S. S. R. K. Rao, Spaces with the Namioka-Phelps property have trivial -structure, Arch. Math. (Basel) 62 (1994), 65-68. Zbl0818.46021
- [20] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57. Zbl0648.46004
- [21] S F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331. Zbl0363.46024
- [22] Y D. Yost, Approximation by compact operators between spaces, J. Approx. Theory 49 (1987), 99-109. Zbl0621.41025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.