Endpoint bounds for convolution operators with singular measures
E. Ferreyra; T. Godoy; M. Urciuolo
Colloquium Mathematicae (1998)
- Volume: 76, Issue: 1, page 35-47
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [B-S] Bennett C. and Sharpley R., Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988. Zbl0647.46057
- [C] Christ M., Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
- [F-G-U] Ferreyra E., Godoy T. and Urciuolo M., - estimates for convolution operators with -dimensional singular measures, J. Fourier Anal. Appl., to appear.
- [O] Oberlin D., Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60. Zbl0613.43002
- [R-S] Ricci F. and Stein E.M., Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389. Zbl0684.22006
- [S] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [St] Stein E.M. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [S-W] Stein E. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.