Periodic L i p α functions with L i p β difference functions

Tamás Keleti

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 1, page 99-103
  • ISSN: 0010-1354

How to cite

top

Keleti, Tamás. "Periodic $Lip^α$ functions with $Lip^β$ difference functions." Colloquium Mathematicae 76.1 (1998): 99-103. <http://eudml.org/doc/210555>.

@article{Keleti1998,
author = {Keleti, Tamás},
journal = {Colloquium Mathematicae},
keywords = {periodic Lipschitz functions; pseudo-Dirichlet sets; difference functions; fractional integration},
language = {eng},
number = {1},
pages = {99-103},
title = {Periodic $Lip^α$ functions with $Lip^β$ difference functions},
url = {http://eudml.org/doc/210555},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Keleti, Tamás
TI - Periodic $Lip^α$ functions with $Lip^β$ difference functions
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 1
SP - 99
EP - 103
LA - eng
KW - periodic Lipschitz functions; pseudo-Dirichlet sets; difference functions; fractional integration
UR - http://eudml.org/doc/210555
ER -

References

top
  1. [1] M. Balcerzak, Z. Buczolich and M. Laczkovich, Lipschitz differences and Lipschitz functions, Colloq. Math. 72 (1997), 319-324. Zbl0877.26004
  2. [2] N. K. Bary, Trigonometric Series, Moscow, 1961 (in Russian); English transl.: A Treatise on Trigonometric Series, Macmillan, New York, 1964. 
  3. [3] Z. Bukovská, Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53-62. Zbl0733.43003
  4. [4] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994-1995), 454-509. Zbl0835.42001
  5. [5] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223. Zbl0793.42003
  6. [6] T. Keleti, Difference functions of periodic measurable functions, PhD thesis, Eötvös Loránd University, Budapest, 1996 (http://www.cs.elte.hu/phd_th/). Zbl0910.28003
  7. [7] T. Keleti, Difference functions of periodic measurable functions, submitted. Zbl0910.28003
  8. [8] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Differentiations and Some Applications, Science and Technology, Minsk, 1987 (in Russian). 
  9. [9] Z A. Zygmund, Trigonometric Series, Vols. I-II, Cambridge Univ. Press, 1959. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.