Periodic L i p α functions with L i p β difference functions

Tamás Keleti

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 1, page 99-103
  • ISSN: 0010-1354

How to cite

top

Keleti, Tamás. "Periodic $Lip^α$ functions with $Lip^β$ difference functions." Colloquium Mathematicae 76.1 (1998): 99-103. <http://eudml.org/doc/210555>.

@article{Keleti1998,
author = {Keleti, Tamás},
journal = {Colloquium Mathematicae},
keywords = {periodic Lipschitz functions; pseudo-Dirichlet sets; difference functions; fractional integration},
language = {eng},
number = {1},
pages = {99-103},
title = {Periodic $Lip^α$ functions with $Lip^β$ difference functions},
url = {http://eudml.org/doc/210555},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Keleti, Tamás
TI - Periodic $Lip^α$ functions with $Lip^β$ difference functions
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 1
SP - 99
EP - 103
LA - eng
KW - periodic Lipschitz functions; pseudo-Dirichlet sets; difference functions; fractional integration
UR - http://eudml.org/doc/210555
ER -

References

top
  1. [1] M. Balcerzak, Z. Buczolich and M. Laczkovich, Lipschitz differences and Lipschitz functions, Colloq. Math. 72 (1997), 319-324. Zbl0877.26004
  2. [2] N. K. Bary, Trigonometric Series, Moscow, 1961 (in Russian); English transl.: A Treatise on Trigonometric Series, Macmillan, New York, 1964. 
  3. [3] Z. Bukovská, Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53-62. Zbl0733.43003
  4. [4] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994-1995), 454-509. Zbl0835.42001
  5. [5] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223. Zbl0793.42003
  6. [6] T. Keleti, Difference functions of periodic measurable functions, PhD thesis, Eötvös Loránd University, Budapest, 1996 (http://www.cs.elte.hu/phd_th/). Zbl0910.28003
  7. [7] T. Keleti, Difference functions of periodic measurable functions, submitted. Zbl0910.28003
  8. [8] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Differentiations and Some Applications, Science and Technology, Minsk, 1987 (in Russian). 
  9. [9] Z A. Zygmund, Trigonometric Series, Vols. I-II, Cambridge Univ. Press, 1959. 

NotesEmbed ?

top

You must be logged in to post comments.