# Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings

Colloquium Mathematicae (1998)

- Volume: 77, Issue: 1, page 59-83
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topSalwa, Arkadiusz. "Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings." Colloquium Mathematicae 77.1 (1998): 59-83. <http://eudml.org/doc/210577>.

@article{Salwa1998,

author = {Salwa, Arkadiusz},

journal = {Colloquium Mathematicae},

keywords = {nilpotent elements; idempotents; nilpotency indices; simple Artinian rings},

language = {eng},

number = {1},

pages = {59-83},

title = {Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings},

url = {http://eudml.org/doc/210577},

volume = {77},

year = {1998},

}

TY - JOUR

AU - Salwa, Arkadiusz

TI - Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings

JO - Colloquium Mathematicae

PY - 1998

VL - 77

IS - 1

SP - 59

EP - 83

LA - eng

KW - nilpotent elements; idempotents; nilpotency indices; simple Artinian rings

UR - http://eudml.org/doc/210577

ER -

## References

top- [1] G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. Zbl0326.16019
- [2] L. A. Bokut', Embedding into simple associative algebras, Algebra i Logika 15 (1976), no. 2, 117-142 (in Russian).
- [3] M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. (Basel) 53 (1989), 4-10. Zbl0645.16005
- [4] M. Ferrero, E. R. Puczyowski and S. Sidki, On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. 39 (1996), 178-185. Zbl0859.16027
- [5] I. N. Herstein, Noncommutative Rings, Wiley, New York, 1968.
- [6] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260. Zbl0106.25402
- [7] O. H. Kegel, On rings that are sums of two subrings, J. Algebra 1 (1964), 103-109. Zbl0203.04201
- [8] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435. Zbl0784.16011
- [9] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987. Zbl0644.16008
- [10] A. Salwa, Structure of skew linear semigroups, Internat. J. Algebra Comput. 3 (1993), 101-113. Zbl0779.20039
- [11] A. Salwa, Rings that are sums of two locally nilpotent subrings, Comm. Algebra 24 (1996), 3921-3931. Zbl0878.16012
- [12] L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414. Zbl0561.16005

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.