Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings

Arkadiusz Salwa

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 1, page 59-83
  • ISSN: 0010-1354

How to cite

top

Salwa, Arkadiusz. "Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings." Colloquium Mathematicae 77.1 (1998): 59-83. <http://eudml.org/doc/210577>.

@article{Salwa1998,
author = {Salwa, Arkadiusz},
journal = {Colloquium Mathematicae},
keywords = {nilpotent elements; idempotents; nilpotency indices; simple Artinian rings},
language = {eng},
number = {1},
pages = {59-83},
title = {Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings},
url = {http://eudml.org/doc/210577},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Salwa, Arkadiusz
TI - Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 1
SP - 59
EP - 83
LA - eng
KW - nilpotent elements; idempotents; nilpotency indices; simple Artinian rings
UR - http://eudml.org/doc/210577
ER -

References

top
  1. [1] G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. Zbl0326.16019
  2. [2] L. A. Bokut', Embedding into simple associative algebras, Algebra i Logika 15 (1976), no. 2, 117-142 (in Russian). 
  3. [3] M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. (Basel) 53 (1989), 4-10. Zbl0645.16005
  4. [4] M. Ferrero, E. R. Puczyowski and S. Sidki, On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. 39 (1996), 178-185. Zbl0859.16027
  5. [5] I. N. Herstein, Noncommutative Rings, Wiley, New York, 1968. 
  6. [6] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260. Zbl0106.25402
  7. [7] O. H. Kegel, On rings that are sums of two subrings, J. Algebra 1 (1964), 103-109. Zbl0203.04201
  8. [8] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435. Zbl0784.16011
  9. [9] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987. Zbl0644.16008
  10. [10] A. Salwa, Structure of skew linear semigroups, Internat. J. Algebra Comput. 3 (1993), 101-113. Zbl0779.20039
  11. [11] A. Salwa, Rings that are sums of two locally nilpotent subrings, Comm. Algebra 24 (1996), 3921-3931. Zbl0878.16012
  12. [12] L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414. Zbl0561.16005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.