One-parameter global bifurcation in a multiparameter problem

Stewart Welsh

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 1, page 85-96
  • ISSN: 0010-1354

How to cite

top

Welsh, Stewart. "One-parameter global bifurcation in a multiparameter problem." Colloquium Mathematicae 77.1 (1998): 85-96. <http://eudml.org/doc/210578>.

@article{Welsh1998,
author = {Welsh, Stewart},
journal = {Colloquium Mathematicae},
keywords = {nonlinear eigenvalue problem; global bifurcation point},
language = {eng},
number = {1},
pages = {85-96},
title = {One-parameter global bifurcation in a multiparameter problem},
url = {http://eudml.org/doc/210578},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Welsh, Stewart
TI - One-parameter global bifurcation in a multiparameter problem
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 1
SP - 85
EP - 96
LA - eng
KW - nonlinear eigenvalue problem; global bifurcation point
UR - http://eudml.org/doc/210578
ER -

References

top
  1. [1] Alexander, J. C. and Antman, S. S., Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76 (1981), 339-354. Zbl0479.58005
  2. [2] Alexander, J. C. and Fitzpatrick, P. M., Galerkin approximations in several parameter bifurcation problems, Math. Proc. Cambridge Philos. Soc. 87 (1980), 489-500. Zbl0455.47047
  3. [3] Alexander, J. C. and Yorke, J. A., Global bifurcation of periodic orbits, Amer. J. Math. 100 (1978), 263-292. Zbl0386.34040
  4. [4] Cantrell, R. S., A homogeneity condition guaranteeing bifurcation in multiparameter nonlinear eigenvalue problems, Nonlinear Anal. 8 (1984), 159-169. Zbl0545.34012
  5. [5] Cantrell, Multiparameter bifurcation problems and topological degree, J. Differential Equations 52 (1984), 39-51. Zbl0488.47033
  6. [6] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. Zbl0219.46015
  7. [7] Esquinas, J. and López-Gómez, J., Optimal multiplicity in local bifurcation theory. I. Generalized generic eigenvalues, J. Differential Equations 71 (1988), 71-92. Zbl0648.34027
  8. [8] Esquinas, J. and López-Gómez, J., Optimal multiplicity in bifurcation theory. II. General case, ibid. 75 (1988), 206-215. Zbl0668.47043
  9. [9] Esquinas, J. and López-Gómez, J., Multiparameter bifurcation for some reaction-diffusion systems, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 135-143. Zbl0727.35010
  10. [10] Fitzpatrick, P. M., Homotopy, linearization and bifurcation, Nonlinear Anal. 12 (1988), 171-184. Zbl0653.58028
  11. [11] Fitzpatrick, P. M., Massabó, I. and Pejsachowicz, J., Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann. 263 (1983), 61-73. Zbl0519.58024
  12. [12] Hale, J. K., Bifurcation from simple eigenvalues for several parameter families, Nonlinear Anal. 2 (1978), 491-497. Zbl0383.34050
  13. [13] Ize, J., Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. 174 (1976). Zbl0338.47032
  14. [14] Ize, J., Necessary and sufficient conditions for multiparameter bifurcation, Rocky Mountain J. Math. 18 (1988), 305-337. Zbl0652.58008
  15. [15] Ize, J., Massabó, I., Pejsachowicz, J. and Vignoli, A., Structure and dimension of global branches of solutions to multiparameter nonlinear equations, Trans. Amer. Math. Soc. 291 (1985), 383-435. Zbl0578.58005
  16. [16] López-Gómez, J., Multiparameter bifurcation based on the linear part, J. Math. Anal. Appl. 138 (1989), 358-370. Zbl0668.47042
  17. [17] Magnus, R. J., A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc. 32 (1976), 251-278. Zbl0316.47042
  18. [18] Petryshyn, W. V., On projectional solvability and the Fredholm alternative for equations involving linear A-proper operators, Arch. Rational Mech. Anal. 30 (1968), 270-284. Zbl0176.45902
  19. [19] Petryshyn, W. V., Invariance of domain for locally A-proper mappings and its implications, J. Funct. Anal. 5 (1970), 137-159. Zbl0197.40501
  20. [20] Petryshyn, W. V., Stability theory for linear A-proper mappings, Proc. Math. Phys. Sect. Shevchenko Sci. Soc., 1973. 
  21. [21] Petryshyn, W. V., On the approximation solvability of equations involving A-proper and pseudo A-proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223-448. Zbl0303.47038
  22. [22] Stuart, C. A. and Toland, J. F., A global result applicable to nonlinear Steklov problems, J. Differential Equations 15 (1974), 247-268. Zbl0276.35037
  23. [23] Taylor, A. E. and Lay, D. C., Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. Zbl0501.46003
  24. [24] Toland, J. F., Topological methods for nonlinear eigenvalue problems, Battelle Math. Report No. 77, 1973. 
  25. [25] Toland, J. F., Global bifurcation theory via Galerkin's method, Nonlinear Anal. 1 (1977), 305-317. Zbl0477.47036
  26. [26] Welsh, S. C., Global results concerning bifurcation for Fredholm maps of index zero with a transversality condition, Nonlinear Anal. 12 (1988), 1137-1148. Zbl0672.47051
  27. [27] Welsh, S. C., A vector parameter global bifurcation result, ibid. 25 (1995), 1425-1435. Zbl0901.47041
  28. [28] Westreich, D., Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc. 41 (1973), 609-614. Zbl0272.58004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.