# Some Remarks on Rational Müntz Approximation on [0,∞)

Colloquium Mathematicae (1998)

- Volume: 77, Issue: 2, page 233-243
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topZhou, S.. "Some Remarks on Rational Müntz Approximation on [0,∞)." Colloquium Mathematicae 77.2 (1998): 233-243. <http://eudml.org/doc/210586>.

@article{Zhou1998,

abstract = {},

author = {Zhou, S.},

journal = {Colloquium Mathematicae},

keywords = {rational approximation; Müntz approximation},

language = {eng},

number = {2},

pages = {233-243},

title = {Some Remarks on Rational Müntz Approximation on [0,∞)},

url = {http://eudml.org/doc/210586},

volume = {77},

year = {1998},

}

TY - JOUR

AU - Zhou, S.

TI - Some Remarks on Rational Müntz Approximation on [0,∞)

JO - Colloquium Mathematicae

PY - 1998

VL - 77

IS - 2

SP - 233

EP - 243

AB -

LA - eng

KW - rational approximation; Müntz approximation

UR - http://eudml.org/doc/210586

ER -

## References

top- [1] J. Bak and D. J. Newman, Rational combinations of ${x}_{k}^{\lambda}$, ${\lambda}_{k}$ ≥ 0 are always dense in C[0,1], J. Approx. Theory 23 (1978), 155-157. Zbl0385.41007
- [2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966. Zbl0161.25202
- [3] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), 197-199. Zbl0333.41012
- [4] Q. Y. Zhao and S. P. Zhou, Are rational combinations of ${x}_{n}^{\lambda}$, ${\lambda}_{n}$ ≥ 0, always dense in ${C}_{[}0,\infty ]$, Approx. Theory Appl. 13 (1997), no. 1, 10-17. Zbl0904.41008
- [5] S. P. Zhou, On Müntz rational approximation, Constr. Approx. 9 (1993), 435-444. Zbl0780.41010

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.