Some Remarks on Rational Müntz Approximation on [0,∞)

S. Zhou

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 2, page 233-243
  • ISSN: 0010-1354

How to cite

top

Zhou, S.. "Some Remarks on Rational Müntz Approximation on [0,∞)." Colloquium Mathematicae 77.2 (1998): 233-243. <http://eudml.org/doc/210586>.

@article{Zhou1998,
abstract = {},
author = {Zhou, S.},
journal = {Colloquium Mathematicae},
keywords = {rational approximation; Müntz approximation},
language = {eng},
number = {2},
pages = {233-243},
title = {Some Remarks on Rational Müntz Approximation on [0,∞)},
url = {http://eudml.org/doc/210586},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Zhou, S.
TI - Some Remarks on Rational Müntz Approximation on [0,∞)
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 233
EP - 243
AB -
LA - eng
KW - rational approximation; Müntz approximation
UR - http://eudml.org/doc/210586
ER -

References

top
  1. [1] J. Bak and D. J. Newman, Rational combinations of x k λ , λ k ≥ 0 are always dense in C[0,1], J. Approx. Theory 23 (1978), 155-157. Zbl0385.41007
  2. [2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966. Zbl0161.25202
  3. [3] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), 197-199. Zbl0333.41012
  4. [4] Q. Y. Zhao and S. P. Zhou, Are rational combinations of x n λ , λ n ≥ 0, always dense in C [ 0 , ] , Approx. Theory Appl. 13 (1997), no. 1, 10-17. Zbl0904.41008
  5. [5] S. P. Zhou, On Müntz rational approximation, Constr. Approx. 9 (1993), 435-444. Zbl0780.41010

NotesEmbed ?

top

You must be logged in to post comments.