# Homeomorphic neighborhoods in ${\mu}^{n+1}$-manifolds

Colloquium Mathematicae (1998)

- Volume: 77, Issue: 2, page 245-250
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topAkaike, Yūji. "Homeomorphic neighborhoods in $μ^{n+1}$-manifolds." Colloquium Mathematicae 77.2 (1998): 245-250. <http://eudml.org/doc/210587>.

@article{Akaike1998,

author = {Akaike, Yūji},

journal = {Colloquium Mathematicae},

keywords = {$μ^\{n+1\}$-manifold; proper n-shape; n-clean; $Δ_\{n+1\}$-product; proper homotopy; -dimensional universal Menger compactum; proper -shape; -manifold},

language = {eng},

number = {2},

pages = {245-250},

title = {Homeomorphic neighborhoods in $μ^\{n+1\}$-manifolds},

url = {http://eudml.org/doc/210587},

volume = {77},

year = {1998},

}

TY - JOUR

AU - Akaike, Yūji

TI - Homeomorphic neighborhoods in $μ^{n+1}$-manifolds

JO - Colloquium Mathematicae

PY - 1998

VL - 77

IS - 2

SP - 245

EP - 250

LA - eng

KW - $μ^{n+1}$-manifold; proper n-shape; n-clean; $Δ_{n+1}$-product; proper homotopy; -dimensional universal Menger compactum; proper -shape; -manifold

UR - http://eudml.org/doc/210587

ER -

## References

top- [1] Y. Akaike, Proper n-shape and property $SU{V}^{n}$, Bull. Polish Acad. Sci. Math. 45 (1997), 251-261.
- [2] Y. Akaike, Proper n-shape and the Freudenthal compactification, Tsukuba J. Math., to appear. Zbl0924.54022
- [3] B. J. Ball and R. B. Sher, A theory of proper shape for locally compact metric spaces, Fund. Math. 86 (1974), 163-192. Zbl0293.54037
- [4] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). Zbl0645.54029
- [5] A. Chigogidze, Compacta lying in the n-dimensional Menger compactum and having homeomorphic complements in it, Mat. Sb. 133 (1987), 481-496 (in Russian); English transl.: Math. USSR-Sb. 61 (1988), 471-484. Zbl0669.54010
- [6] A. Chigogidze, The theory of n-shape, Uspekhi Mat. Nauk 44 (5) (1989), 117-140 (in Russian); English transl.: Russian Math. Surveys 44 (5) (1989), 145-174.
- [7] A. Chigogidze, Classification theorem for Menger manifolds, Proc. Amer. Math. Soc. 116 (1992), 825-832. Zbl0773.55005
- [8] A. Chigogidze, Finding a boundary for a Menger manifold, ibid. 121 (1994), 631-640. Zbl0838.57014
- [9] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua, H. Cook et al. (eds.), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 37-88.
- [10] Y. Iwamoto, Infinite deficiency in Menger manifolds, Glas. Mat. Ser. III 30 (50) (1995), 311-322. Zbl0845.54011
- [11] R. B. Sher, Proper shape theory and neighborhoods of sets in Q-manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 271-276. Zbl0307.55011
- [12] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327. Zbl0022.40702

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.