Homeomorphic neighborhoods in μ n + 1 -manifolds

Yūji Akaike

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 2, page 245-250
  • ISSN: 0010-1354

How to cite

top

Akaike, Yūji. "Homeomorphic neighborhoods in $μ^{n+1}$-manifolds." Colloquium Mathematicae 77.2 (1998): 245-250. <http://eudml.org/doc/210587>.

@article{Akaike1998,
author = {Akaike, Yūji},
journal = {Colloquium Mathematicae},
keywords = {$μ^\{n+1\}$-manifold; proper n-shape; n-clean; $Δ_\{n+1\}$-product; proper homotopy; -dimensional universal Menger compactum; proper -shape; -manifold},
language = {eng},
number = {2},
pages = {245-250},
title = {Homeomorphic neighborhoods in $μ^\{n+1\}$-manifolds},
url = {http://eudml.org/doc/210587},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Akaike, Yūji
TI - Homeomorphic neighborhoods in $μ^{n+1}$-manifolds
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 245
EP - 250
LA - eng
KW - $μ^{n+1}$-manifold; proper n-shape; n-clean; $Δ_{n+1}$-product; proper homotopy; -dimensional universal Menger compactum; proper -shape; -manifold
UR - http://eudml.org/doc/210587
ER -

References

top
  1. [1] Y. Akaike, Proper n-shape and property S U V n , Bull. Polish Acad. Sci. Math. 45 (1997), 251-261. 
  2. [2] Y. Akaike, Proper n-shape and the Freudenthal compactification, Tsukuba J. Math., to appear. Zbl0924.54022
  3. [3] B. J. Ball and R. B. Sher, A theory of proper shape for locally compact metric spaces, Fund. Math. 86 (1974), 163-192. Zbl0293.54037
  4. [4] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). Zbl0645.54029
  5. [5] A. Chigogidze, Compacta lying in the n-dimensional Menger compactum and having homeomorphic complements in it, Mat. Sb. 133 (1987), 481-496 (in Russian); English transl.: Math. USSR-Sb. 61 (1988), 471-484. Zbl0669.54010
  6. [6] A. Chigogidze, The theory of n-shape, Uspekhi Mat. Nauk 44 (5) (1989), 117-140 (in Russian); English transl.: Russian Math. Surveys 44 (5) (1989), 145-174. 
  7. [7] A. Chigogidze, Classification theorem for Menger manifolds, Proc. Amer. Math. Soc. 116 (1992), 825-832. Zbl0773.55005
  8. [8] A. Chigogidze, Finding a boundary for a Menger manifold, ibid. 121 (1994), 631-640. Zbl0838.57014
  9. [9] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua, H. Cook et al. (eds.), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 37-88. 
  10. [10] Y. Iwamoto, Infinite deficiency in Menger manifolds, Glas. Mat. Ser. III 30 (50) (1995), 311-322. Zbl0845.54011
  11. [11] R. B. Sher, Proper shape theory and neighborhoods of sets in Q-manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 271-276. Zbl0307.55011
  12. [12] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327. Zbl0022.40702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.