On the uniformization of Hartogs domains in 2 and their envelopes of holomorphy

Ewa Ligocka

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 2, page 265-269
  • ISSN: 0010-1354

How to cite

top

Ligocka, Ewa. "On the uniformization of Hartogs domains in $ℂ^2$ and their envelopes of holomorphy." Colloquium Mathematicae 77.2 (1998): 265-269. <http://eudml.org/doc/210589>.

@article{Ligocka1998,
author = {Ligocka, Ewa},
journal = {Colloquium Mathematicae},
keywords = {Hartogs domain; envelope of holomorphy},
language = {eng},
number = {2},
pages = {265-269},
title = {On the uniformization of Hartogs domains in $ℂ^2$ and their envelopes of holomorphy},
url = {http://eudml.org/doc/210589},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Ligocka, Ewa
TI - On the uniformization of Hartogs domains in $ℂ^2$ and their envelopes of holomorphy
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 265
EP - 269
LA - eng
KW - Hartogs domain; envelope of holomorphy
UR - http://eudml.org/doc/210589
ER -

References

top
  1. [1] D. E. Barrett and J. E. Fornæss, Uniform approximation of holomorphic functions on bounded Hartogs domains in 2 , Math. Z. 191 (1986), 61-72. Zbl0581.32021
  2. [2] E. Casadio Tarabusi and S. Trapani, Envelopes of holomorphy of Hartogs and circular domains, Pacific J. Math. 149 (1991), 231-249. Zbl0685.32008
  3. [3] K. Diederich and J. E. Fornæss, Pseudoconvex domains: an example with nontrivial Nebenhülle, Math. Ann. 225 (1977), 275-292. Zbl0327.32008
  4. [4] R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965. Zbl0141.08601
  5. [5] B. Malgrange, Lectures on the Theory of Functions of Several Complex Variables, Tata Institute, Bombay, 1958 (reissued 1965). 
  6. [6] R. Nevanlinna, Uniformisierung, Springer, 1953. 
  7. [7] T. Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 238-240. Zbl0508.32008
  8. [8] M. Shirinbekov, Construction of envelopes of holomorphy for multiple Hartogs domains, Mat. Zametki 27 (1980), 77-87 (in Russian). Zbl0426.32006
  9. [9] K. Stein, Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. (Basel) 7 (1956), 354-361. Zbl0072.08002
  10. [10] V. S. Vladimirov and M. Shirinbekov, On the construction of envelopes of holomorphy for Hartogs domains, Ukrain. Mat. Zh. 15 (1963), 189-192 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.