General local cohomology modules and Koszul homology modules

K. Khashyarmanesh; Sh. Salarian

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 2, page 305-313
  • ISSN: 0010-1354

How to cite

top

Khashyarmanesh, K., and Salarian, Sh.. "General local cohomology modules and Koszul homology modules." Colloquium Mathematicae 77.2 (1998): 305-313. <http://eudml.org/doc/210592>.

@article{Khashyarmanesh1998,
author = {Khashyarmanesh, K., Salarian, Sh.},
journal = {Colloquium Mathematicae},
keywords = {Koszul complex; torsion theory; triangular subset; torsion functor},
language = {eng},
number = {2},
pages = {305-313},
title = {General local cohomology modules and Koszul homology modules},
url = {http://eudml.org/doc/210592},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Khashyarmanesh, K.
AU - Salarian, Sh.
TI - General local cohomology modules and Koszul homology modules
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 305
EP - 313
LA - eng
KW - Koszul complex; torsion theory; triangular subset; torsion functor
UR - http://eudml.org/doc/210592
ER -

References

top
  1. [1] M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London Math. Soc. 19 (1979), 402-410. Zbl0404.13010
  2. [2] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), 173-181. 
  3. [3] M. H. Bijan-Zadeh, Modules of generalized fractions and general local cohomology modules, Arch. Math. (Basel) 48 (1987), 58-62. Zbl0601.13007
  4. [4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1993. 
  5. [5] E. S. Golod, Modules of generalized fractions, Koszul complex, and local cohomology, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1986, no. 6, 7-13, 86 (in Russian); English transl.: Moscow Univ. Math. Bull. 41 (1986), no. 3, 6-13. Zbl0614.13007
  6. [6] M. A. Hamieh and R. Y. Sharp, Krull dimension and generalized fractions, Proc. Edinburgh Math. Soc. 28 (1985), 349-353. Zbl0586.13008
  7. [7] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, in: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, Mass., 1992), Contemp. Math. 159, Amer. Math. Soc., Providence, R.I., 1994, 307-328. 
  8. [8] L. O'Carroll, On the generalized fractions of Sharp and Zakeri, J. London Math. Soc. (2) 28 (1983), 417-427. Zbl0497.13007
  9. [9] J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979. Zbl0441.18018
  10. [10] P. Schenzel, N. V. Trung und N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. 
  11. [11] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika 29 (1982), 32-41. Zbl0497.13006
  12. [12] R. Y. Sharp and H. Zakeri, Local cohomology and modules of generalized fractions, ibid., 296-306. Zbl0523.13001
  13. [13] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Deutscher Verlag der Wiss., Berlin, 1986. Zbl0606.13017
  14. [14] H. Zakeri, Modules of generalized fractions and their application in commutative algebra, Ph.D. thesis, University of Sheffield, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.