General local cohomology modules and Koszul homology modules
K. Khashyarmanesh; Sh. Salarian
Colloquium Mathematicae (1998)
- Volume: 77, Issue: 2, page 305-313
- ISSN: 0010-1354
Access Full Article
topHow to cite
topKhashyarmanesh, K., and Salarian, Sh.. "General local cohomology modules and Koszul homology modules." Colloquium Mathematicae 77.2 (1998): 305-313. <http://eudml.org/doc/210592>.
@article{Khashyarmanesh1998,
author = {Khashyarmanesh, K., Salarian, Sh.},
journal = {Colloquium Mathematicae},
keywords = {Koszul complex; torsion theory; triangular subset; torsion functor},
language = {eng},
number = {2},
pages = {305-313},
title = {General local cohomology modules and Koszul homology modules},
url = {http://eudml.org/doc/210592},
volume = {77},
year = {1998},
}
TY - JOUR
AU - Khashyarmanesh, K.
AU - Salarian, Sh.
TI - General local cohomology modules and Koszul homology modules
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 305
EP - 313
LA - eng
KW - Koszul complex; torsion theory; triangular subset; torsion functor
UR - http://eudml.org/doc/210592
ER -
References
top- [1] M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London Math. Soc. 19 (1979), 402-410. Zbl0404.13010
- [2] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), 173-181.
- [3] M. H. Bijan-Zadeh, Modules of generalized fractions and general local cohomology modules, Arch. Math. (Basel) 48 (1987), 58-62. Zbl0601.13007
- [4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1993.
- [5] E. S. Golod, Modules of generalized fractions, Koszul complex, and local cohomology, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1986, no. 6, 7-13, 86 (in Russian); English transl.: Moscow Univ. Math. Bull. 41 (1986), no. 3, 6-13. Zbl0614.13007
- [6] M. A. Hamieh and R. Y. Sharp, Krull dimension and generalized fractions, Proc. Edinburgh Math. Soc. 28 (1985), 349-353. Zbl0586.13008
- [7] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, in: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, Mass., 1992), Contemp. Math. 159, Amer. Math. Soc., Providence, R.I., 1994, 307-328.
- [8] L. O'Carroll, On the generalized fractions of Sharp and Zakeri, J. London Math. Soc. (2) 28 (1983), 417-427. Zbl0497.13007
- [9] J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979. Zbl0441.18018
- [10] P. Schenzel, N. V. Trung und N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73.
- [11] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika 29 (1982), 32-41. Zbl0497.13006
- [12] R. Y. Sharp and H. Zakeri, Local cohomology and modules of generalized fractions, ibid., 296-306. Zbl0523.13001
- [13] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Deutscher Verlag der Wiss., Berlin, 1986. Zbl0606.13017
- [14] H. Zakeri, Modules of generalized fractions and their application in commutative algebra, Ph.D. thesis, University of Sheffield, 1982.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.