An elementary proof of the Weitzenböck Theorem
Colloquium Mathematicae (1998)
- Volume: 78, Issue: 1, page 123-132
- ISSN: 0010-1354
Access Full Article
topHow to cite
topTyc, Andrzej. "An elementary proof of the Weitzenböck Theorem." Colloquium Mathematicae 78.1 (1998): 123-132. <http://eudml.org/doc/210597>.
@article{Tyc1998,
author = {Tyc, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {rational representation; invariant algebra},
language = {eng},
number = {1},
pages = {123-132},
title = {An elementary proof of the Weitzenböck Theorem},
url = {http://eudml.org/doc/210597},
volume = {78},
year = {1998},
}
TY - JOUR
AU - Tyc, Andrzej
TI - An elementary proof of the Weitzenböck Theorem
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 123
EP - 132
LA - eng
KW - rational representation; invariant algebra
UR - http://eudml.org/doc/210597
ER -
References
top- [1] W. Bruns and J. Herzog, z Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, 1993.
- [2] J. E. Humphreys, z Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1972.
- [3] A. Nowicki, z Polynomial Derivations and Their Rings of Constants, University Press, Toruń, 1994.
- [4] N. Onoda, z Linear actions of on polynomial rings, in: Proc. 25th Sympos. Ring Theory (Matsumoto, 1992), Okayama Univ., Okayama, 1992, 11-16.
- [5] V. L. Popov, z Finiteness theorem for representations with a free algebra of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 347-370 (in Russian).
- [6] C. S. Seshadri, z On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961), 403-409. Zbl0112.25402
- [7] T. A. Springer, z Invariant Theory, Lecture Notes in Math. 585, Springer, New York, 1977.
- [8] R. Weitzenböck, z Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 230-250.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.