Squares in Lucas sequenceshaving an even first parameter

Paulo Ribenboim; Wayne McDaniel

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 1, page 29-34
  • ISSN: 0010-1354

How to cite

top

Ribenboim, Paulo, and McDaniel, Wayne. "Squares in Lucas sequenceshaving an even first parameter." Colloquium Mathematicae 78.1 (1998): 29-34. <http://eudml.org/doc/210602>.

@article{Ribenboim1998,
author = {Ribenboim, Paulo, McDaniel, Wayne},
journal = {Colloquium Mathematicae},
keywords = {Lucas sequences; recursive sequences; perfect squares},
language = {eng},
number = {1},
pages = {29-34},
title = {Squares in Lucas sequenceshaving an even first parameter},
url = {http://eudml.org/doc/210602},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Ribenboim, Paulo
AU - McDaniel, Wayne
TI - Squares in Lucas sequenceshaving an even first parameter
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 29
EP - 34
LA - eng
KW - Lucas sequences; recursive sequences; perfect squares
UR - http://eudml.org/doc/210602
ER -

References

top
  1. [1] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646. Zbl0248.10016
  2. [2] W. Ljunggren, Über die unbestimmte Gleichung A x 2 - B y 4 = C , Arch. Math. Naturvid. 41 (1938), 3-18. Zbl64.0975.05
  3. [3] W. Ljunggren, Zur Theorie der Gleichung x 2 + 1 = D y 4 , Avh. Norske Vid. Akad. Oslo. I, No. 5 (1942), 1-26. 
  4. [4] W. Ljunggren, New propositions about the indeterminate equation x n - 1 x - 1 = y q , Norske Mat. Tidskr. 25 (1943), 17-20. 
  5. [5] L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London, 1969. 
  6. [6] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5-13. Zbl0488.10009
  7. [7] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989. Zbl0642.10001
  8. [8] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-123. Zbl0851.11011
  9. [9] N. Robbins, Some identities and divisibility properties of linear second-order recursion sequences, Fibonacci Quart. 20 (1982), 21-24. Zbl0469.10003
  10. [10] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187. Zbl0519.10004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.