A remark on a modified Szász-Mirakjan operator

Guanzhen Zhou; Songping Zhou

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 2, page 157-160
  • ISSN: 0010-1354

Abstract

top
We prove that, for a sequence of positive numbers δ(n), if n 1 / 2 δ ( n ) ¬ as n , to guarantee that the modified Szász-Mirakjan operators S n , δ ( f , x ) converge to f(x) at every point, f must be identically zero.

How to cite

top

Zhou, Guanzhen, and Zhou, Songping. "A remark on a modified Szász-Mirakjan operator." Colloquium Mathematicae 79.2 (1999): 157-160. <http://eudml.org/doc/210619>.

@article{Zhou1999,
abstract = {We prove that, for a sequence of positive numbers δ(n), if $n^\{1/2\}δ(n)\lnot \rightarrow \infty $ as $n\rightarrow \infty $, to guarantee that the modified Szász-Mirakjan operators $S_\{n,δ\}(f,x)$ converge to f(x) at every point, f must be identically zero.},
author = {Zhou, Guanzhen, Zhou, Songping},
journal = {Colloquium Mathematicae},
keywords = {modified Szász-Mirakjan operator; modified Szász-Mirakyan operator},
language = {eng},
number = {2},
pages = {157-160},
title = {A remark on a modified Szász-Mirakjan operator},
url = {http://eudml.org/doc/210619},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Zhou, Guanzhen
AU - Zhou, Songping
TI - A remark on a modified Szász-Mirakjan operator
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 2
SP - 157
EP - 160
AB - We prove that, for a sequence of positive numbers δ(n), if $n^{1/2}δ(n)\lnot \rightarrow \infty $ as $n\rightarrow \infty $, to guarantee that the modified Szász-Mirakjan operators $S_{n,δ}(f,x)$ converge to f(x) at every point, f must be identically zero.
LA - eng
KW - modified Szász-Mirakjan operator; modified Szász-Mirakyan operator
UR - http://eudml.org/doc/210619
ER -

References

top
  1. [1] J. Gróf, Über Approximation durch Polynome mit Belegungsfunktion, Acta Math. Acad. Sci. Hungar. 35 (1980), 109-116. Zbl0452.41017
  2. [2] T. Hermann, Approximation of unbounded functions on unbounded interval, ibid. 29 (1977), 393-398. Zbl0371.41012
  3. [3] H. G. Lehnhoff, On a modified Szász-Mirakjan-operator, J. Approx. Theory 42 (1984), 278-282. Zbl0573.41034
  4. [3] X. H. Sun, On the convergence of the modified Szász-Mirakjan operator, Approx. Theory Appl. 10 (1994), no. 1, 20-25. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.