A remark on a modified Szász-Mirakjan operator
Colloquium Mathematicae (1999)
- Volume: 79, Issue: 2, page 157-160
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topZhou, Guanzhen, and Zhou, Songping. "A remark on a modified Szász-Mirakjan operator." Colloquium Mathematicae 79.2 (1999): 157-160. <http://eudml.org/doc/210619>.
@article{Zhou1999,
	abstract = {We prove that, for a sequence of positive numbers δ(n), if $n^\{1/2\}δ(n)\lnot \rightarrow \infty $ as $n\rightarrow \infty $, to guarantee that the modified Szász-Mirakjan operators $S_\{n,δ\}(f,x)$ converge to f(x) at every point, f must be identically zero.},
	author = {Zhou, Guanzhen, Zhou, Songping},
	journal = {Colloquium Mathematicae},
	keywords = {modified Szász-Mirakjan operator; modified Szász-Mirakyan operator},
	language = {eng},
	number = {2},
	pages = {157-160},
	title = {A remark on a modified Szász-Mirakjan operator},
	url = {http://eudml.org/doc/210619},
	volume = {79},
	year = {1999},
}
TY  - JOUR
AU  - Zhou, Guanzhen
AU  - Zhou, Songping
TI  - A remark on a modified Szász-Mirakjan operator
JO  - Colloquium Mathematicae
PY  - 1999
VL  - 79
IS  - 2
SP  - 157
EP  - 160
AB  - We prove that, for a sequence of positive numbers δ(n), if $n^{1/2}δ(n)\lnot \rightarrow \infty $ as $n\rightarrow \infty $, to guarantee that the modified Szász-Mirakjan operators $S_{n,δ}(f,x)$ converge to f(x) at every point, f must be identically zero.
LA  - eng
KW  - modified Szász-Mirakjan operator; modified Szász-Mirakyan operator
UR  - http://eudml.org/doc/210619
ER  - 
References
top- [1] J. Gróf, Über Approximation durch Polynome mit Belegungsfunktion, Acta Math. Acad. Sci. Hungar. 35 (1980), 109-116. Zbl0452.41017
- [2] T. Hermann, Approximation of unbounded functions on unbounded interval, ibid. 29 (1977), 393-398. Zbl0371.41012
- [3] H. G. Lehnhoff, On a modified Szász-Mirakjan-operator, J. Approx. Theory 42 (1984), 278-282. Zbl0573.41034
- [3] X. H. Sun, On the convergence of the modified Szász-Mirakjan operator, Approx. Theory Appl. 10 (1994), no. 1, 20-25.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 