Vector-valued ergodic theorems for multiparameter additive processes

Ryotaro Sato

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 2, page 193-202
  • ISSN: 0010-1354

Abstract

top
Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=( u 1 , ... , u d ) , u i ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on L 1 ((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on L 1 ((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ L 1 ((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in L 1 ((Ω,Σ,μ);X) with respect to the semigroup T.

How to cite

top

Sato, Ryotaro. "Vector-valued ergodic theorems for multiparameter additive processes." Colloquium Mathematicae 79.2 (1999): 193-202. <http://eudml.org/doc/210634>.

@article{Sato1999,
abstract = {Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=($u_\{1\}$, ... ,$u_\{d\})$, $u_\{i\}$ ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on $L_\{1\}$((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on $L_\{1\}$((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ $L_\{1\}$((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in $L_\{1\}$((Ω,Σ,μ);X) with respect to the semigroup T.},
author = {Sato, Ryotaro},
journal = {Colloquium Mathematicae},
keywords = {multiparameter dynamical system; ergodic theorem; multiparameter additive processes},
language = {eng},
number = {2},
pages = {193-202},
title = {Vector-valued ergodic theorems for multiparameter additive processes},
url = {http://eudml.org/doc/210634},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Sato, Ryotaro
TI - Vector-valued ergodic theorems for multiparameter additive processes
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 2
SP - 193
EP - 202
AB - Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=($u_{1}$, ... ,$u_{d})$, $u_{i}$ ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on $L_{1}$((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on $L_{1}$((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ $L_{1}$((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in $L_{1}$((Ω,Σ,μ);X) with respect to the semigroup T.
LA - eng
KW - multiparameter dynamical system; ergodic theorem; multiparameter additive processes
UR - http://eudml.org/doc/210634
ER -

References

top
  1. [1] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958. Zbl0084.10402
  2. [2] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985. 
  3. [3] A. M. Garsia, Topics in Almost Everywhere Convergence, Markham, Chicago, 1970. Zbl0198.38401
  4. [4] S. Hasegawa and R. Sato, On d-parameter pointwise ergodic theorems in L 1 , Proc. Amer. Math. Soc. 123 (1995), 3455-3465. Zbl0849.47007
  5. [5] S. Hasegawa and R. Sato, On a d-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions, Comment. Math. Univ. Carolin. 38 (1997), 453-462. Zbl0937.47009
  6. [6] S. Hasegawa, R. Sato and S. Tsurumi, Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95-106. Zbl0377.47008
  7. [7] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985. 
  8. [8] R. Sato, Vector valued differentiation theorems for multiparameter additive processes in L p spaces, Positivity 2 (1998), 1-18. Zbl0915.47012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.