Approximation by linear combination of Szász-Mirakian operators
Colloquium Mathematicae (1999)
- Volume: 80, Issue: 1, page 123-130
- ISSN: 0010-1354
Access Full Article
topHow to cite
topKasana, H., and Agrawal, P.. "Approximation by linear combination of Szász-Mirakian operators." Colloquium Mathematicae 80.1 (1999): 123-130. <http://eudml.org/doc/210698>.
@article{Kasana1999,
author = {Kasana, H., Agrawal, P.},
journal = {Colloquium Mathematicae},
keywords = {Bernstein polynomials; Szász-Mirakyan operators},
language = {eng},
number = {1},
pages = {123-130},
title = {Approximation by linear combination of Szász-Mirakian operators},
url = {http://eudml.org/doc/210698},
volume = {80},
year = {1999},
}
TY - JOUR
AU - Kasana, H.
AU - Agrawal, P.
TI - Approximation by linear combination of Szász-Mirakian operators
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 1
SP - 123
EP - 130
LA - eng
KW - Bernstein polynomials; Szász-Mirakyan operators
UR - http://eudml.org/doc/210698
ER -
References
top- [1] F. H. Cheng, On the rate of convergence of the Szász-Mirakian operator for functions of bounded variation, J. Approx. Theory 40 (1984), 226-241. Zbl0532.41026
- [2] J. Gröf, A Szász Ottó-felé operator approximaciós tulajdonsgariól [On the approximation properties of the operators of O. Szász], Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 20 (1971), 35-44 (in Hungarian).
- [3] T. Hermann, On the Szász-Mirakian operators, Acta Math. Acad. Sci. Hungar. 32 (1978), 163-173. Zbl0392.41011
- [4] H. S. Kasana, On approximation of unbounded functions by linear combinations of modified Szász-Mirakian operators, ibid. 61 (1993), 281-288. Zbl0794.41014
- [5] H. S. Kasana and P. N. Agrawal, On sharp estimates and linear combinations of modified Bernstein polynomials, Bull. Soc. Math. Belg. Sér. B 40 (1988), 61-71. Zbl0658.41009
- [6] H. S. Kasana, G. Prasad, P. N. Agrawal and A. Sahai, On modified Szász operators, in: Mathematical Analysis and its Applications (Kuwait, 1985), Pergamon Press, Oxford, 1988, 29-41.
- [7] C. P. May, Saturation and inverse theorems for combinations of a class of exponential operators, Canad. J. Math. 28 (1976), 1224-1250. Zbl0342.41018
- [8] S. P. Singh, On the degree of approximation by Szász operators, Bull. Austral. Math. Soc. 24 (1981), 221-225. Zbl0511.41027
- [9] X. H. Sun, On the simultaneous approximation of functions and their derivatives by the Szász-Mirakian operators, J. Approx. Theory 55 (1988), 279-288.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.