The graph of generating sets of an abelian group

Persi Diaconis; Ronald Graham

Colloquium Mathematicae (1999)

  • Volume: 80, Issue: 1, page 31-38
  • ISSN: 0010-1354

How to cite

top

Diaconis, Persi, and Graham, Ronald. "The graph of generating sets of an abelian group." Colloquium Mathematicae 80.1 (1999): 31-38. <http://eudml.org/doc/210703>.

@article{Diaconis1999,
author = {Diaconis, Persi, Graham, Ronald},
journal = {Colloquium Mathematicae},
keywords = {Abelian group; generator; connected graph},
language = {eng},
number = {1},
pages = {31-38},
title = {The graph of generating sets of an abelian group},
url = {http://eudml.org/doc/210703},
volume = {80},
year = {1999},
}

TY - JOUR
AU - Diaconis, Persi
AU - Graham, Ronald
TI - The graph of generating sets of an abelian group
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 1
SP - 31
EP - 38
LA - eng
KW - Abelian group; generator; connected graph
UR - http://eudml.org/doc/210703
ER -

References

top
  1. [1] Celler, F., Leedham-Green, C., Murray, S., Wiemeyer, A. and O'Brien, E., Generating random elements of a finite group, Comm. Algebra 23 (1995), 4831-4948. Zbl0836.20094
  2. [2] Chung, F. R. K., Spectral Graph Theory, CBMS Regional Conf. Ser. in Math. 92, Amer. Math. Soc., Providence, 1997. Zbl0867.05046
  3. [3] Chung, F. and Graham, R., Random walks on generating sets for finite groups, Electron. J. Combin. 2 (1997), no. R7. Zbl0883.60065
  4. [4] Chung, Stratified random walks on an n -cube, Random Structures Algorithms (1997), to appear. 
  5. [5] Dennis, R. K. and Geller, S. C., K i of upper triangular matrix rings, Proc. Amer. Math. Soc. 56 (1976), 73-78. 
  6. [6] Diaconis, P., Group Representations in Probability and Statistics, IMS Lecture Notes--Monograph Ser. 11, Inst. Math. Statist., Hayward, CA, 1988. 
  7. [7] Diaconis, P. and Saloff-Coste, L., Random walks on finite groups: A survey of analytic techniques, in: Probability Measures on Groups and Related Structures, XI, H. Heyer (ed.), World Scientific, River Edge, NJ, 1995, 44-75. Zbl0918.60059
  8. [8] Diaconis, Walks on generating sets of abelian groups, Probab. Theory Related Fields 105 (1996), 393-421. 
  9. [9] Diaconis, Walks on generating sets of groups, Technical Report, Dept. of Statistics, Stanford Univ., 1996. 
  10. [10] Dunwoody, M., On T -systems of groups, J. Austral. Math. Soc. 3 (1963), 172-179. Zbl0133.28004
  11. [11] Hall, P., The Eulerian functions of a group, Quart. J. Math. 7 (1936), 134-151. Zbl0014.10402
  12. [12] Holt, D. and Rees, S., An implementation of the Neumann-Praeger algorithm for the recognition of special linear groups, J. Experiment. Math. 1 (1992), 237-292. Zbl0790.20001
  13. [13] Laffrety, J. and Rockmore, D., Personal communication, 1997. 
  14. [14] Neumann, B., On a question of Gaschütz, Arch. Math. (Basel) 7 (1956), 87-90. Zbl0075.23903
  15. [15] Neumann, B. H. and Neumann, H., Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1951), 106-125. Zbl0042.02102
  16. [16] Rosenberg, J., Algebraic K -Theory and its Applications, Grad. Texts in Math. 147, Springer, New York, 1994. 
  17. [17] Schrijver, A., Theory of Linear and Integer Programming, Wiley, Chichester, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.