# Completeness of ${L}_{1}$ spaces over finitely additive probabilities

Colloquium Mathematicae (1999)

- Volume: 80, Issue: 1, page 83-95
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topGangopadhyay, S., and Rao, B.. "Completeness of $L_1$ spaces over finitely additive probabilities." Colloquium Mathematicae 80.1 (1999): 83-95. <http://eudml.org/doc/210707>.

@article{Gangopadhyay1999,

author = {Gangopadhyay, S., Rao, B.},

journal = {Colloquium Mathematicae},

keywords = {Sobczyk-Hammer decomposition; Hewitt-Yosida decomposition; $L_1$ space; strategic products; finitely additive measure; space; strategic product},

language = {eng},

number = {1},

pages = {83-95},

title = {Completeness of $L_1$ spaces over finitely additive probabilities},

url = {http://eudml.org/doc/210707},

volume = {80},

year = {1999},

}

TY - JOUR

AU - Gangopadhyay, S.

AU - Rao, B.

TI - Completeness of $L_1$ spaces over finitely additive probabilities

JO - Colloquium Mathematicae

PY - 1999

VL - 80

IS - 1

SP - 83

EP - 95

LA - eng

KW - Sobczyk-Hammer decomposition; Hewitt-Yosida decomposition; $L_1$ space; strategic products; finitely additive measure; space; strategic product

UR - http://eudml.org/doc/210707

ER -

## References

top- [1] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges--a Study of Finitely Additive Measures, Academic Press, 1983. Zbl0516.28001
- [2] R. Chen, A finitely additive version of Kolmogorov's law of iterated logarithm, Israel J. Math. 23 (1976), 209-220. Zbl0367.60027
- [3] R. Chen, Some finitely additive versions of the strong law of large numbers, ibid. 24 (1976), 244-259. Zbl0367.60026
- [4] L. E. Dubins and L. J. Savage, How to Gamble if You Must: Inequalities for Stochastic Processes, McGraw-Hill, 1965. Zbl0133.41402
- [5] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, 1958.
- [6] S. Gangopadhyay, On the completeness of ${\mathcal{L}}_{p}$-spaces over a charge, Colloq. Math. 58 (1990), 291-300. Zbl0719.28002
- [7] S. Gangopadhyay and B. V. Rao, Some finitely additive probability: random walks, J. Theoret. Probab. 10 (1997), 643-657. Zbl0886.60001
- [8] S. Gangopadhyay and B. V. Rao, Strategic purely nonatomic random walks, ibid. 11 (1998), 409-415. Zbl0914.60039
- [9] S. Gangopadhyay and B. V. Rao, On the Hewitt-Savage zero one law in the strategic setup, preprint. Zbl0978.60028
- [10] J. W. Hagood, A Radon-Nikodym theorem and ${L}_{p}$ completeness for finitely additive vector measures, J. Math. Anal. App. 113 (1986), 266-279. Zbl0601.28005
- [11] A. Halevy and M. Bhaskara Rao, On an analogue of Komlos' theorem for strategies, Ann. Probab. 7 (1979), 1073-1077. Zbl0425.60022
- [12] D. Heath and W. D. Sudderth, On finitely additive priors$,$ coherence$,$ and extended admissibility, Ann. Statist. 6 (1978), 333-345. Zbl0385.62005
- [13] D. Heath and W. D. Sudderth, Coherent inference from improper priors and from finitely additive priors, ibid. 17 (1989), 907-919. Zbl0687.62003
- [14] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501. Zbl0066.29604
- [15] R. L. Karandikar, A general principle for limit theorems in finitely additive probability, ibid. 273 (1982), 541-550. Zbl0507.60012
- [16] R. L. Karandikar, A general principle for limit theorems in finitely additive probability$:$ the dependent case, J. Multivariate Anal. 24 (1988), 189-206. Zbl0638.60026
- [17] D. A. Lane and W. D. Sudderth, Diffuse models for sampling and predictive inference, Ann. Statist. 6 (1978), 1318-1336. Zbl0398.62003
- [18] R. A. Purves and W. D. Sudderth, Some finitely additive probability, Ann. Probab. 4 (1976), 259-276. Zbl0367.60034
- [19] R. A. Purves and W. D. Sudderth, Finitely additive zero-one laws, Sankhyā Ser. A 45 (1983), 32-37. Zbl0535.60030
- [20] S. Ramakrishnan, Finitely additive Markov chains, Ph.D. thesis, Indian Statistical Institute, 1980. Zbl0474.60027
- [21] S. Ramakrishnan, Finitely additive Markov chains, Trans. Amer. Math. Soc. 265 (1981), 247-272. Zbl0474.60027
- [22] S. Ramakrishnan, Central limit theorem in a finitely additive setting, Illinois J. Math. 28 (1984), 139-161. Zbl0514.60030
- [23] S. Ramakrishnan, Potential theory for finitely additive Markov chains, Stochastic Process. Appl. 16 (1984), 287-303. Zbl0538.60079
- [24] R. Ranga Rao, A note on finitely additive measures, Sankhyā Ser. A 18 (1958), 27-28. Zbl0082.26503
- [25] A. Sobczyk and P. C. Hammer, A decomposition of additive set functions, Duke Math. J. 11 (1944), 839-846. Zbl0063.07111
- [26] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. Zbl0046.05401

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.