On quasi-p-bounded subsets

M. Sanchis; A. Tamariz-Mascarúa

Colloquium Mathematicae (1999)

  • Volume: 80, Issue: 2, page 175-189
  • ISSN: 0010-1354

Abstract

top
The notion of quasi-p-boundedness for p ∈ ω * is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω * can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω * , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × P R K ( p ) is bounded in X × P R K ( p ) , if and only if c l β ( X × P R K ( p ) ) ( B × P R K ( p ) ) = c l β X B × β ( ω ) , where P R K ( p ) is the set of Rudin-Keisler predecessors of p.

How to cite

top

Sanchis, M., and Tamariz-Mascarúa, A.. "On quasi-p-bounded subsets." Colloquium Mathematicae 80.2 (1999): 175-189. <http://eudml.org/doc/210710>.

@article{Sanchis1999,
abstract = {The notion of quasi-p-boundedness for p ∈ $ω^*$ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in $ω^*$ can be defined in terms of quasi-p-pseudocompactness. For p ∈ $ω^*$, we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × $P_\{RK\}(p)$ is bounded in X × $P_\{RK\}(p)$, if and only if $cl_\{β(X × P_\{RK\}(p))\}(B× P_\{RK\}(p)) = cl_\{βX\} B × β(ω)$, where $P_\{RK\}(p)$ is the set of Rudin-Keisler predecessors of p.},
author = {Sanchis, M., Tamariz-Mascarúa, A.},
journal = {Colloquium Mathematicae},
keywords = {free ultrafilter; P-point; (quasi)-p-pseudocompact space; Rudin-Keisler pre-order; p-limit point; (quasi)-p-bounded subset; bounded subset; bounded set; quasi--bounded subset; quasi--pseudocompact space; Rudin-Keisler preorder; -point; -limit point},
language = {eng},
number = {2},
pages = {175-189},
title = {On quasi-p-bounded subsets},
url = {http://eudml.org/doc/210710},
volume = {80},
year = {1999},
}

TY - JOUR
AU - Sanchis, M.
AU - Tamariz-Mascarúa, A.
TI - On quasi-p-bounded subsets
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 2
SP - 175
EP - 189
AB - The notion of quasi-p-boundedness for p ∈ $ω^*$ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in $ω^*$ can be defined in terms of quasi-p-pseudocompactness. For p ∈ $ω^*$, we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × $P_{RK}(p)$ is bounded in X × $P_{RK}(p)$, if and only if $cl_{β(X × P_{RK}(p))}(B× P_{RK}(p)) = cl_{βX} B × β(ω)$, where $P_{RK}(p)$ is the set of Rudin-Keisler predecessors of p.
LA - eng
KW - free ultrafilter; P-point; (quasi)-p-pseudocompact space; Rudin-Keisler pre-order; p-limit point; (quasi)-p-bounded subset; bounded subset; bounded set; quasi--bounded subset; quasi--pseudocompact space; Rudin-Keisler preorder; -point; -limit point
UR - http://eudml.org/doc/210710
ER -

References

top
  1. [1] A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. Zbl0198.55401
  2. [2] J. L. Blasco, Two problems on k r -spaces, Acta Math. Hungar. 32 (1978), 27-30. Zbl0388.54017
  3. [3] A. Blass and S. Shelah, There may be simple P 1 -points and P 2 -points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243. Zbl0634.03047
  4. [4] R. Engelking, General Topology, Polish Sci. Publ., Warszawa, 1977. 
  5. [5] Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. Zbl0166.18602
  6. [6] Z. Frolík, The topological product of two pseudocompact spaces, Czechoslovak Math. J. 85 (1960), 339-349. Zbl0099.38503
  7. [7] S. García-Ferreira, Some generalizations of pseudocompactness, in: Ann. New York Acad. Sci. 728, New York Acad. Sci., 1994, 22-31. Zbl0911.54022
  8. [8] S. García-Ferreira, V. I. Malykhin and A. Tamariz-Mascarúa , Solutions and problems on convergence structures to ultrafilters, Questions Answers Gen. Topology 13 (1995), 103-122 . 
  9. [9] S. García-Ferreira, M. Sanchis and S. Watson , Some remarks on the product of C α -compact subsets, Czechoslovak Math. J., to appear. Zbl1050.54016
  10. [10] J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418. Zbl0288.54020
  11. [11] S. Hernández, M. Sanchis and M. Tkačenko , Bounded sets in spaces and topological groups, Topology Appl., to appear. Zbl0979.54037
  12. [12] A. Kato, A note on pseudocompact k r -spaces, Proc. Amer. Math. Soc. 61 (1977), 175-176. Zbl0347.54026
  13. [13] M. Katětov, Characters and types of point sets, Fund. Math. 50 (1961), 367-380. 
  14. [14] M. Katětov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173-189. Zbl0155.50301
  15. [15] N. N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 393-411. Zbl0229.54017
  16. [16] N. N. Noble, Countably compact and pseudocompact products, Czechoslovak Math. J. 19 (1969), 390-397. Zbl0184.47706
  17. [17] M. E. Rudin, Partial orders on the types of βℕ, Trans. Amer. Math. Soc. 155 (1971), 353-362. 
  18. [18] M. Sanchis and A. Tamariz-Mascarúa, p -pseudocompactness and related topics in topological spaces, Topology Appl., to appear. 
  19. [19] M. G. Tkačenko, Compactness type properties in topological groups, Czechoslovak Math. J. 113 (1988), 324-341. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.